Мобильные генетические элементы

МГЭ- фрагменты ДНК, способные к перемещению в геноме клетки или между геномами. Содержат гены ферментов, необходимых для их перемещения (транспозиции). Встраиваясь в различные участки хромосом, мобильные генетические элементы изменяют активность генов, вызывают различные типы мутаций, способствуя нестабильности и изменчивости генома. Процесс перемещения МГЭ- транспозиция. МГЭ были обнаружены Б. МакКлинток еще в 1951 году (у кукурузы).2 МГЭ:1) Ас- активатор-отвечает за перемещение Ds; 2) Ds- диссациатор- перемещается при транспозициях МГЭ. В 1976г. Г.Гвоздев СССР открыл МГЭ у дрозофил. В 1984г. Федоров изучил молек.структуру Ac, Ds. Разновидности МГЭ- у прокариот:1)IS-элементы(кодируют фермент транспозазу); 2)Tn- элементы(несут другие гены); у эукариот: 1) транспозоны- Ас, Ds, 2) ретротранспозоны.

Хотя мобильные элементы в целом являются «генетическими паразитами», вызывая мутации в генетическом материале организма хозяина и понижая его приспособленность за счёт траты энергии на репликацию и синтез белков паразита, они являются важным механизмом изменчивости и обмена генетическим материалом между организмами одного вида и разными видами.

 

25. Генетическая рекомбинация и её молекулярный механизм.Заключительным этапом при любой форме обмена генетическим материалом является рекомбинация между привнесенной ДНК и хромосомой клетки-реципиента. Можно выделить три типа рекомбинации: • общую (происходит между гомологичными последовательностями ДНК; это — рекомбинация между гомологичными хроматидами в мейозе, реже - в митозе); • сайт-специфическую (затрагивает молекулы ДНК, характеризующиеся ограниченным структурным сходством, и наблюдается при интеграции фагового генома и бактериальную хромосому); • незаконную (происходит во время транспозиции, не основанной на гомологии последовательностей ДНК).

Примером генетической рекомбинации является мейотическая рекомбинация (кроссинговер) у эукариот, которая происходит в клетках после репликации, в профазе первого мейотического деления. Во время лептотеныхромосомы конденсируются и становятся видимыми, В каждой из них после репликации дуплексная ДН К представлена двумя сестринскими хроматидами.

На следующей стадии, зиготене, гомологичные хромосомы начинают соприкасаться друг с другом (конъюгировать) на отдельных, пока еще коротких участках. Одновременно осевые элементы гомологичных хромосом начинают соединяться попарно с помощью белка SCP1, который протягивается поперек между ними в виде субмикроскопических волокон (филамент). По завершении конъюгации, на стадии пахитены гомологичные хромосомы оказываются объединенными в биваленты по всей длине за счет специфической структуры, состоящей из двух продольных белковых тяжей. Это - так называемые латеральные элементы, в состав которых входят осевые элементы с прикрепленными к ним, петлеобразно уложенными фибриллами хроматина сестринских хроматид. Латеральные элементы соединены между собой поперечными белковыми волокнами, которые в совокупности формируют третью продольную структуру - центральный элемент. Функциональное значение этой структуры, напоминающей застежку «молнию», состоит в том, что, с одной стороны, она не дает конъюгирующим хромосомам необратимо слипнуться, а с другой стороны — закрепляет их в строго гомологичном относительно локализованных на них генах взаиморасположении На стадии диплотены гомологичные хромосомы бивалентов начинают расходиться, но обнаруживается, что несестринские хроматиды в биваленте остаются сцепленными в некоторых точках, образуя фигуру, получившую название хиазмы. На стадии диакинеза хромосомы конденсируются путем спирализации, а хиазмы вследствие отталкивания гомологов начинают сдвигаться к краям хромосом. В этот момент все четыре хроматиды становятся видимыми.

 

 

26 Полимеразная цепная реакция (ПЦР) и её практическое использование.В 1985 году К. Мюллис с сотрудниками разработали метод клонирования последовательностей ДНК in vitro, который получил название ПЦР. К анализируемому образцу ДНК добавляют в избытке 2 синтетических олигонуклеотида - праймера размером около 20 нуклеотидов. Каждый из них комплементарен одному из 3’-концов фрагмента ДНК. ДНК нагревают для разделения цепей двойной спирали (денатурация 90-960С), а при охлаждении происходит гибридизация праймеров с комплементарными участками фрагментов ДНК (отжиг 50-700С). В результате в растворе будут находиться однонитевые ДНК с короткими двухцепочечными участками - затравками (праймерами). При добавлении нуклеотидов и ДНК-полимеразы синтезируются комплементарные цепи и образуются идентичные фрагменты ДНК (элонгация 70-720С). Реакция останавливается и ДНК снова денатурируется прогреванием. В процессе охлаждения праймеры, находящиеся в избытке, вновь эффективно гибридизуются, но уже не только с цепями исходной ДНК, но и вновь синтезированными. Внесение в систему ДНК-полимеразы инициирует второй цикл полимеразной реакции. Многократное повторение описанной процедуры позволяет провести 30 и более циклов ферментативного удлинения праймеров. При этом число сегментов ДНК, ограниченных с обоих концов используемыми праймерами, с каждым циклом ПЦР увеличивается экспоненциально (приближается к зависимости 2n, где n — число циклов). Выход всех других продуктов реакции увеличивается по линейной зависимости. Таким образом, в процессе рассматриваемой реакции эффективно амплифицируется только та последовательность ДНК, которая ограничена праймерами. Применяется для диагностики инфекционных заболеваний как бактериальной, так и вирусной природы, способствует развитию фундаментальных исследований в области изучения хронических и малоизученных инфекционных заболеваний, ДНК-дактилоскопия, определение отцовства.