Частные случаи приведения пространственной системы сил

Если при приведении системы сил к динамическому винту главный момент динамы оказался равным нулю, а главный век­тор отличен от нуля, то это означает, что система сил приведена к равнодействующей, причем центральная ось является линией действия этой равнодействующей. Выясним, при каких условиях, относящихся к главному век­тору Fp и главному моменту М0, это может быть. Поскольку главный момент динамы М* равен составляющей главного мо­мента М0, направленной по главному вектору, то рассматривае­мый случай М* =О означает, что главный момент М0 перпенди­кулярен главному вектору, т. е. /2 = Fo*M0 = 0. Отсюда непо­средственно вытекает, что если главный вектор F0 не равен нулю, а второй инвариант равен нулю, Fo≠O, /2 = F0*M0=0, (7.9)то рассматриваемая система приводится к равнодействующей.

В частности, если для какого-либо центра приведения F0≠0, а М0 = 0, то это означает, что система сил приведена к равно­действующей, проходящей через данный центр приведения; при этом условие (7.9) также будет выполнено.Обобщим приведенную в главе V теорему о моменте равно­действующей (теорему Вариньона) на случай пространственной системы сил.Если пространственная система. сил приводится к равнодейст­вующей, то момент равнодействующей относительно произвольной точки равен геометрической сумме моментов всех сил относительно той же точки. Пусть система сил имеет равнодействующую R и точка О лежит на линии действия этой равнодействующей. Если приводить заданную систему сил к этой точке, то получим, что главный момент равен нулю. Возьмем какой-либо другой центр приведения О1; (7.10) С другой стороны, на основании формулы (4.14) имеем Mo1=Mo+Mo1(Fo), (7.11) т.к М0 = 0. Сравнивая выражения (7.10) и (7.11) и учиты­вая, что в данном случае F0 = R, получаем (7.12).

Таким образом, теорема доказана.

Пусть при каком-либо выборе центра приведения Fo=О, М ≠0. Так как главный вектор не зависит от центра приведе­ния, то он равен нулю и при любом другом выборе центра при­ведения. Поэтому главный момент тоже не меняется при пере­мене центра приведения, и, следовательно, в этом случае система сил приводится к паре сил с моментом, равным M0 .

Составим теперь таблицу всех возможных случаев приведения пространственной системы сил:

  I2=Fo*Mo Fo Mo Слечай приведения
I2≠0 Fo≠0 Mo≠0 Динамический винт
I2=0 Fo≠0 Mo≠0;Mo=0 Равнодействующая
I2=0 Fo=0 Mo≠0 Пара сил
I2=0 Fo=0 Mo=0 Система сил эквивалентна 0

Если все силы находятся в одной плоскости, например, в пло­скости Оху, то их проекции на ось г и моменты относительно осей х и у будут равны нулю. Следовательно, Fz=0; Mox=0, Moy=0. Внося эти значения в формулу (7.5), найдем, что второй инва­риант плоской системы сил равен нулю.Тот же результат мы получим и для пространственной системы параллельных сил. Действительно, пусть все силы параллельны оси z. Тогда проекции их на оси х и у и моменты относительно оси z будут равны 0. Fx=0, Fy=0, Moz=0

На основании доказанного можно утверждать, что плоская система сил и система параллельных сил не приводятся к динамическому винту.

 

11. Равновесие тела при наличии трения скольженияЕсли два тела / и // (рис. 6.1) взаимодействуют друг с другом, соприкасаясь в точке А, то всегда реакцию RA, дейст­вующую, например, со стороны тела // и приложенную к телу /, можно разложить на две составляю­щие: N.4, направленную по общей нормали к поверхности соприкасаю­щихся тел в точке Л, и Т4, лежащую в касательной плоскости. Составляю­щая N.4 называется нормальной реак­цией, сила Т л называется силой тре­ния скольжения — она препятствует" скольжению тела / по телу //. В со­ответствии с аксиомой 4 (3 з-он Ньютона) на тело // со стороны тела / действует равная по модулю и противоположно направленная сила реакции. Ее составляющая, перпендикулярная касательной плос­кости, называется силой нормального давления. Как было сказано выше, сила трения ТА = О, если соприкасающиеся поверхности идеально гладкие. В реальных условиях поверхности шероховаты и во многих случаях пренебречь силой трения нельзя.Для выяснения основных свойств сил трения произведем опыт по схеме, представленной на рис. 6.2, а. К телу 5, нахо­дящемуся на неподвижной плите D, присоединена перекинутая через блок С нить, свободный конец которой снабжен опорной площадкой А. Если площадку А постепенно нагружать, то с уве­личением ее общего веса будет возрастать натяжение нити S, которое стремится сдвинуть тело вправо. Однако пока общая нагрузка не слишком велика, сила трения Т будет удерживать тело В в покое. На рис. 6.2, б изображены действующие на тело В силы, причем через Р обозначена сила тяжести, а через N — нормальная реакция плиты D.Если нагрузка недостаточна для нарушения покоя, справед­ливы следующие уравнения равновесия: N-P = 0, (6.1) S-T = 0. (6.2).Отсюда следует, что N = P и T = S. Таким образом, пока тело находится в покое, сила трения остается равной силе натя­жения нити S. Обозначим через Tmax силу трения в критический момент процесса нагружения, когда тело В теряет равновесие и начинает скользить по плите D. Следовательно, если тело нахо­дится в равновесии, то T≤Tmax.Максимальная сила трения Ттах зависит от свойств материа­лов, из которых сделаны тела, их состояния (например, от харак­тера обработки поверхности), а также от величины нормального давления N. Как показывает опыт, максимальная сила трения при­ближенно пропорциональна нор­мальному давлению, т. е. имеет место равенство Tmax=fN. (6.4).Это соотношение носит название закона Амонтона — Кулона.Безразмерный коэффициент / называется коэффициентом тре­ния скольжения. Как следует из опыта, его величина в широких пределах не зависит от площади соприкасающихся поверхностей, но зависит от материала и степени шероховатости соприкасаю­щихся поверхностей. Значения коэффициентов трения устанавли­ваются опытным путем и их можно найти в справочных таблицах. Неравенство' (6.3) можно теперь записать в виде T≤fN(6,5).Случай строгого равенства в (6.5) отвечает максимальному значению силы трения. Это значит, что силу трения можно вычислять по формуле T = fN только в тех случаях, когда зара­нее известно, что имеет место критический случай. Во всех же других случаях силу трения следует определять из уравнений равновесия.Рассмотрим тело, находящееся на шероховатой поверхности. Будем считать, что в результате действия активных сил и сил реакции тело находится в предельном равновесии. На рис. 6.6, a показана предельная реакция R и ее составляющие N и Ттах (в положении, изображенном на этом рисунке, активные силы стремятся сдвинуть тело вправо, максимальная сила трения Ттах направлена влево). Угол ф между предельной реакцией R и нор­малью к поверхности называется углом трения. Найдем этот угол. Из рис. 6.6, а имеем tgφ=Tmax/N или, пользуясь выражением (6.4), tgφ= f (6-7)Из этой формулы видно, что вместо коэффициента трения можно задавать угол трения (в справочных таблицах приводятся обе величины).