Структурный синтез при проектировании технологических процессов

В основе решения задач структурного синтеза различной сложности лежит перебор вариантов счетного множества. При переборе каждая проба включает:

создание (поиск) очередного варианта;

принятие решения о замене ранее выбранного варианта новым;

продолжение или прекращение поиска новых вариантов.

Задачи структурного синтеза при автоматизированном технологическом проектировании зависят от уровня сложности. В наиболее простых задачах синтеза (первого уровня сложности) определяется структура технологического процесса или его элементов (операции, переходы). В этом случае часто используют таблицы применяемости (табличные модели).

Для полного перебора вариантов структуры из конечного множества необходимо задавать перечень всех элементов этого множества (второй уровень сложности структурного синтеза ). Такой перечень создается в виде каталога типовых вариантов структуры, например типовых технологических маршрутов. Тогда для данного класса (группы, подгруппы или вида) деталей устанавливается так называемый обобщенный маршрут (обобщенная структура) обработки. Он включает ряд операций обработки, характерный для определенного класса, подкласса или группы деталей. Перечень является упорядоченным и представляет собой множество существующих индивидуальных маршрутов. Маршруты имеют типовую последовательность и содержание, причем они отражают передовой производственный опыт предприятия или отрасли.

При третьем уровне сложности структурного синтеза решаются задачи выбора варианта структуры во множестве с большим, но конечным результатом известных вариантов. Для решения таких задач используют алгоритмы направленного перебора (например, алгоритмы дискретного линейного программирования); алгоритмы последовательные, итерационные и другие; сведение задачи к полному перебору путем ограничения области поиска на стадии формирования исходных данных. Например, оптимизация плана обработки поверхности представляет задачу структурного синтеза, когда выбор варианта плана происходит во множестве с большим, но конечным количеством известных вариантов. Для поиска оптимального варианта используют алгоритмы дискретного программирования, находят условия, которым должен удовлетворять оптимальный многошаговый процесс принятия решений. Подобный анализ называют динамическим программированием. Оптимальная стратегия обладает тем свойством, что, каков бы ни был путь достижения некоторого состояния (технологического перехода), последующие решения должны принадлежать оптимальной стратегии для части плана обработки поверхности, начинающегося с этого состояния (технологического перехода).

Для того чтобы учесть сформулированный принцип оптимальности, можно применить следующие обозначения: fn(рi)у — технологическая себестоимость, отвечающая стратегии минимальных затрат для плана обработки от технологического перехода рi до последнего перехода (если до него остается n шагов); jn(pi ) — решение, позволяющее достичь fn(Pi ).

Общей особенностью всех моделей динамического программирования является сведение задач принятия решения к получению рекуррентных соотношений, которые можно представить как

(17.3)

где Cpi — технологическая себестоимость при выполнении технологического перехода рi.

 

Возможные варианты плана обработки поверхности представляют собой сеть или граф. Рекуррентное соотношение (17.3) позволяет из множества сформированных вариантов выбрать один или несколько лучших с указанием глубин резания, подач и скорости резания по технологическим переходам, а также заготовку.

К третьему уровню сложности структурного синтеза технологического процесса и его элементов также относятся задачи целочисленного программирования; при этом к требованиям линейности критерия и ограничений добавляется условие целочисленности переменных.

Задачи структурного синтеза четвертого уровня сложности (выбор вариантов во множестве с заранее неизвестным числом элементов или вообще в бесконечном множестве) решаются при активном участии технолога-проектировщика и реализуются в режиме диалога с ЭВМ. Технолог, работающий в режиме диалога с ЭВМ, выбирает такой вариант структуры, который представляет собой оптимальный компромисс между производительностью работы автомата и вероятностью обеспечения заданного качества обрабатываемой детали. ЭВМ помогает технологу принять решение об изменении структуры, рассчитав по программе режимы работы и производительность автомата.

Общую трудоемкость проектирования можно уменьшить с помощью перехода от диалогового режима к пакетному. Подобные задачи решают путем применения процедур обучения (процедур формирования понятий). В качестве процедур обучения используют программы распознавания и классификации. При этом происходит перераспределение рутинной и творческой работы при использовании пакетного режима более высокого уровня, технолог занимается подготовкой исходных данных и проверяет окончательный результат.

Пятый, самый сложный уровень структурного синтеза направлен на создание принципиально новых технологических процессов и решается так называемым поисковым конструированием (искусственный интеллект).

Одним из путей поискового конструирования является использование метода эвристических приемов:

Уяснение или формулирование ТЗ.

Выбор одного или нескольких аналогов (прототипов) технологического процесса.

Анализ прототипов, выявление их недостатков и формулирование задачи в виде ответов на вопросы:

· каковы показатели качества в прототипе синтезирующего технологического процесса и насколько желательно их улучшить?

· какие новые параметры качества детали должен обеспечить создаваемый технологический процесс и какие параметры качества должен утратить рассматриваемый прототип?

Решение задачи.

Большие трудности, возникающие при поисковом конструировании и эвристическом программировании, привели к появлению экспертных систем. В основе экспертных систем лежит база данных, используемая экспертом (технологом-пользователем) в режиме диалога. Недостатком таких систем явилась зависимость качества проектных технологических решений (в частности, проектирование маршрутной и операционной технологий) от уровня подготовки эксперта. Другой недостаток заключается в ограничении круга решаемых задач и их размерности.

Необходимость повышения уровня интеллектуализации автоматизированного процесса синтеза технологических решений при высоких размерностях решаемых задач потребовала разработки принципиально новых решений, одним из которых явилось создание и использование метода генетических алгоритмов.

Применение генетических алгоритмов предполагает отображение возможной структуры технологического процесса в виде хромосомы (фреймов), состоящей из генов (полей). Каждый ген является аналогом операции в технологическом маршруте.

При формировании структуры технологического процесса используется набор эвристических правил, позволяющий эффективно формировать конкретные структуры. Оценка эффективности проводится на основе расчета значений целевой функции и анализа полученных результатов. Реализация такого подхода осуществляется на основе алгоритма, представленного на рис. 17.1.

Рис. 17.2. Генетический алгоритм

 

Совокупность возможных структур технологического процесса, представленная в виде хромосом, образует популяцию. Процесс решения задачи сводится к формированию новых популяций путем модификации предыдущих. Модификация основана на формировании новых хромосом путем скрещивания лучших (согласно целевой функции) хромосом из предыдущей популяции. Это позволяет достаточно быстро находить работоспособный вариант при решении задач высокой размерности.

 



php"; ?>