Особенности реализации различных конфигураций сети Ethernet Etherway, Radio Ethernet и Fast Ethernet

Особенности реализации различных конфигураций сети Ethernet: Etherway, Radio Ethernet и Fast Ethernet.

 

 
 

е) Для увеличения пропускной способности в сети Ethernet моноканал может иметь несколько общих звеньев. В частности в сети Etherway (рис. 8.4 КН, стр. 14) абонентские системы подключаются к общим звеньям через блоки доступа, специальные узлы Ethernet и объединяющие модули.

ж) Существуют также сети Ethernet, построенные на радиоканалах (Radio Ethernet - IEEE 802.11х). В таких сетях также используется МДКН/ОК. К моноканалу подключаются приемопередатчики (рис. 4.6), каждый из которых передает и принимает радиосигнал в радиусе 40-50 м. В такой сети обязательно прокладывается стационарная проводная линия связи, к которой подсоединяются приемопередатчики. При этом к сети может подключаться любая станция, находящаяся в зоне прослушивания приемопередатчиков. Без стационарной проводки невозможно заранее рассчитать места установки радио-приемопередатчиков, т.к. все узлы сети мобильные и нужно «покрыть» всю площадь предполагаемого их местонахождения.

з) Создана также скоростная сеть Fast Ethernet. Скорость передачи в этой сети достигает 100 Мбит/с. Как один из вариантов эта сеть используется для подключения серверов. Серверы соединяются с клиентскими узлами через шину 100 Мбит/с и конвертор скорости 100/10 (рис. 4.8). К конвертору с другой стороны подключаются несколько шин по 10 Мбит/с, к которым подсоединяются остальные узлы.

Технология Fast Ethernet является эволюционным развитием классической технологии Ethernet.

В 1992 году группа производителей сетевого оборудования, включая таких лидеров технологии Ethernet как SynOptics, 3Com и ряд других, образовали некоммерческое объединение Fast Ethernet Alliance для разработки стандарта на новую технологию, которая обобщила бы достижения отдельных компаний в области Ethernet-преемственного высокоскоростного стандарта. Новая технология получила название Fast Ethernet.

Одновременно были начаты работы в институте IEEE по стандартизации новой технологии - там была сформирована исследовательская группа для изучения технического потенциала высокоскоростных технологий. За период с конца 1992 года и по конец 1993 года группа IEEE изучила 100-Мегабитные решения, предложенные различными производителями. Наряду с предложениями Fast Ethernet Alliance группа рассмотрела также и другую высокоскоростную технологию, предложенную компаниями Hewlett-Packard и AT&T.

В центре дискуссий была проблема сохранения соревновательного метода доступа CSMA/CD. Предложение по Fast Ethernet'у сохраняло этот метод и тем самым обеспечивало преемственность и согласованность сетей 10Base-T и 100Base-T. Коалиция HP и AT&T, которая имела поддержку гораздо меньшего числа производителей в сетевой индустрии, чем Fast Ethernet Alliance, предложила совершенно новый метод доступа, называемый Demand Priority. Он существенно менял картину поведения узлов в сети, поэтому не смог вписаться в технологию Ethernet и стандарт 802.3, и для его стандартизации был организован новый комитет IEEE 802.12.

В мае 1995 года комитет IEEE принял спецификацию Fast Ethernet в качестве стандарта 802.3u, который не является самостоятельным стандартом, а представляет собой дополнение к существующему стандарту 802.3 в виде глав с 21 по 30. Отличия Fast Ethernet от Ethernet сосредоточены на физическом уровне.

Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используется три варианта кабельных систем - оптоволокно, 2-х парная витая пара категории 5 и 4-х парная витая пара категории 3, причем по сравнению с вариантами физической реализации Ethernet (а их насчитывается шесть), здесь отличия каждого варианта от других глубже - меняется и количество проводников, и методы кодирования.

Основными достоинствами технологии Fast Ethernet являются:

1) увеличение пропускной способности сегментов сети до 100 Мб/c;

2) сохранение метода случайного доступа Ethernet;

3) сохранение звездообразной топологии сетей и поддержка традиционных сред передачи данных - витой пары и оптоволоконного кабеля.

Указанные свойства позволяют осуществлять постепенный переход от сетей 10Base-T - наиболее популярного на сегодняшний день варианта Ethernet - к скоростным сетям, сохраняющим значительную преемственность с хорошо знакомой технологией: Fast Ethernet не требует коренного переобучения персонала и замены оборудования во всех узлах сети.

Официальный стандарт 100Base-T (IEEE 802.3u) установил три различных спецификации для физического уровня (в терминах семиуровневой модели OSI) для поддержки следующих типов кабельных систем:

100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP категории 5, или экранированной витой паре STP Type 1;

100Base-T4 для четырехпарного кабеля на неэкранированной витой паре UTP категории 3, 4 или 5;

100Base-FX для многомодового оптоволоконного кабеля.

Подуровни LLC и MAC в стандарте Fast Ethernet не претерпели изменений.

Форматы кадров технологии Fast Ethernet не отличаются от форматов кадров технологий 10-Мегабитного Ethernet'a.

Все времена передачи кадров Fast Ethernet в 10 раз меньше соответствующих времен технологии 10-Мегабитного Ethernet'а: межбитовый интервал составляет 10 нс вместо 100 нс, а межкадровый интервал - 0.96 мкс вместо 9.6 мкс соответственно.

В сети Fast Ethernet большая скорость передачи достигается за счет использования другого (на манчестерского) кодирования сигналов на физическом уровне. Этот код называется «пять из четырех» (4В/5В). Такое кодирование повышает эффективную скорость передачи (см. лабораторную работу № 4) и используется также в сети FDDI.

10 Мб/с версии Ethernet используют манчестерское кодирование для представления данных при передаче по кабелю. Метод кодирования 4B/5B определен в стандарте FDDI, и он без изменений перенесен в спецификацию PHY FX/TX. При этом методе каждые 4 бита данных MAC-подуровня (называемых символами) представляются 5 битами. Использование избыточного бита позволяет применить потенциальные коды при представлении каждого из пяти бит в виде электрических или оптических импульсов. Потенциальные коды обладают по сравнению с манчестерскими кодами более узкой полосой спектра сигнала, а, следовательно, предъявляют меньшие требования к полосе пропускания кабеля. Однако, прямое использование потенциальных кодов для передачи исходных данных без избыточного бита невозможно из-за плохой самосинхронизации приемника и источника данных: при передаче длинной последовательности единиц или нулей в течение долгого времени сигнал не изменяется и приемник не может определить момент чтения очередного бита.

При использовании пяти бит для кодирования шестнадцати исходных 4-х битовых комбинаций, можно построить такую таблицу кодирования, в которой любой исходный 4-х битовый код представляется 5-ти битовым кодом с чередующимися нулями и единицами. Тем самым обеспечивается синхронизация приемника с передатчиком. Так как исходные биты MAC-подуровня должны передаваться со скоростью 100Мб/c, то наличие одного избыточного бита вынуждает передавать биты результирующего кода 4B/5B со скоростью 125 Мб/c, то есть межбитовое расстояние в устройстве физического уровня составляет 8 наносекунд.

Так как из 32 возможных комбинаций 5-битовых порций для кодирования порций исходных данных нужно только 16, то остальные 16 комбинаций в коде 4В/5B используются в служебных целях.

Наличие служебных символов позволило использовать в спецификациях FX/TX схему непрерывного обмена сигналами между передатчиком и приемником и при свободном состоянии среды, что отличает их от спецификации 10Base-T, когда незанятое состояние среды обозначается полным отсутствием на ней импульсов информации. Для обозначения незанятого состояния среды используется служебный символ Idle (11111), который постоянно циркулирует между передатчиком и приемником, поддерживая их синхронизм и в периодах между передачами информации, а также позволяя контролировать физическое состояние линии.

Существование запрещенных комбинаций символов позволяет отбраковывать ошибочные символы, что повышает устойчивость работы сетей с PHY FX/TX.

Для отделения кадра Ethernet от символов Idle используется комбинация символов Start Delimiter (пара символов JK), а после завершения кадра перед первым символом Idle вставляется символ T.

После преобразования 4-битовых порций MAC-кодов в 5-битовые порции физического уровня их необходимо представить в виде оптических или электрических сигналов в кабеле, соединяющем узлы сети. Для этого используются такие методы физического кодирования, как NRZI (Non Return to Zero Invert to ones - метод без возврата к нулю с инвертированием для единиц) и MLT-3. Эти же методы определены в стандарте FDDI для передачи сигналов по оптоволокну (спецификация PMD) и витой паре (спецификация TP-PMD).

В настоящее время определено 5 различных режимов работы, которые могут поддерживать устройства PHY TX или PHY T4 на витых парах:

10Base-T - 2 пары категории 3;

10Base-T full-duplex - 2 пары категории 3;

100Base-TX - 2 пары категории 5 (или Type 1A STP);

100Base-TX full-duplex - 2 пары категории 5 (или Type 1A STP);

100Base-T4 - 4 пары категории 3.

Узлы, поддерживающие спецификации PHY FX и PHY TX, могут работать в полнодуплексном режиме (full-duplex mode). В этом режиме не используется метод доступа к среде CSMA/CD и отсутствует понятие коллизий - каждый узел одновременно передает и принимает кадры данных по каналам Tx и Rx.

Полнодуплексная работа возможна только при соединения сетевого адаптера с коммутатором или же при непосредственном соединении коммутаторов.

При полнодуплексной работе стандарты 100Base-TX и 100Base-FX обеспечивают скорость обмена данными между узлами 200 Мб/с.

Полнодуплексный режим работы для сетей 100Base-T пока не принят комитетом IEEE в качестве стандарта. Тем не менее, многие производители выпускают как сетевые адаптеры, так и коммутаторы для этого режима. Из-за отсутствия стандарта эти продукты не обязательно корректно работают друг с другом.

В полнодуплексном режиме необходимо определить процедуры управления потоком кадров, так как без этого механизма возможны ситуации, когда буферы коммутатора переполнятся и он начнет терять кадры Ethernet, что всегда крайне нежелательно, так как восстановление информации будет осуществляться более медленными протоколами транспортного или прикладного уровней.

Ввиду отсутствия стандартов на полнодуплексные варианты Ethernet'a каждый производитель сам определяет способы управления потоком кадров в коммутаторах и сетевых адаптерах. Обычно, при заполнении буфера устройства до определенного предела, это устройство посылает передающему устройству сообщение о временном прекращении передачи (XOFF). При освобождении буфера посылается сообщение о возможности возобновить передачу (XON). (Как при программном способе управления потоком данных по протоколу RS-232C).



php"; ?>