Потенциальная энергия упругой деформации
Рассмотрим вначале элементарный объем dV=dxdydz в условиях одноосного напряженного состояния (рис. 1). Мысленно закрепим площадку х=0 (рис. 3). На противоположную площадку действует сила sxdydz. Эта сила совершает работу на перемещении exdx. При увеличении напряжения от нулевого уровня до значения sx соответствующая деформация в силу закона Гука также увеличивается от нуля до значения ex, а работа пропорциональна заштрихованной на рис. 4 площади: dA=0,5sxexdV. Если пренебречь кинетической энергией и потерями, связанными с тепловыми, электромагнитными и другими явлениями, то в силу закона сохранения энергии совершаемая работа перейдет в потенциальную энергию, накапливаемую в процессе деформирования: dA=dU=0,5sxexdV. Величина Ф=dU/dV называется удельной потенциальной энергией деформации, имеющей смысл потенциальной энергии, накопленной в единице объема тела. В случае одноосного напряженного состояния
При одновременном действии напряжений sx, sy и sz на главных площадках (т. е. при отсутствии касательных напряжений) потенциальная энергия равна сумме работ, совершаемых силами sxdydz, sydxdz, szdxdy на соответствующих перемещениях exdx, eydy, ezdz. Удельная потенциальная энергия равна
(2.47)
В частном случае чистого сдвига в плоскости Оху, изображенном на рис. 5, сила txydxdz совершает работу на перемещении gxydy. Соответствующая этому случаю удельная потенциальная энергия деформации равна
Подобные соотношения будут иметь место при сдвиге в других плоскостях.
В общем случае напряженно-деформированного состояния будем иметь
(11)
Если деформации выразить через напряжения с помощью соотношений упругости (5) и (6), то получим эквивалентную форму записи через компоненты тензора напряжений
(12)
Выразив напряжения через деформации с использованием соотношений (6) и (10), получим еще одну форму записи для Ф - через компоненты тензора деформаций
Еще одну форму записи для удельной потенциальной энергии деформации получим, разложив тензоры напряжений и деформаций на шаровые тензоры и девиаторы. В результате (11) можно привести к одной из форм
(13)
Здесь введены обозначения для t - интенсивности касательных напряжений и g - интенсивности деформаций сдвига, которые выражаются через вторые инварианты J2(ds) и J2(de) девиаторов тензора напряжений и тензора деформаций следующим образом:
Первые слагаемые в (13) соответствуют произведению шаровых составляющих тензоров напряжений и деформаций, а вторые - произведению девиаторных составляющих. Так как шаровой тензор характеризует изменение объема, а девиатор - изменение формы, то соотношения (13) можно интерпретировать как разложение удельной потенциальной энергии на две составляющие: Ф=Ф0 + Фф, где Ф0 соответствует изменению объема без изменения формы, а Фф - изменению формы без изменения объема. Первая составляющая будет вычисляться через компоненты тензора напряжений следующим образом:
(14)
Удельную потенциальную энергию изменения формы проще найти не через интенсивность касательных напряжений, а как разность Ф - Ф0. Вычитая (14) из (12), после преобразований получим
9 Механические характеристики конструкционных материалов
Ключевые слова: упругое состояние; пластичное состояние; пределы пропорциональности, упругости, текучести, прочности.
Механические характеристики определяются следующими факторами:
- веществом, его структурой и свойствами;
- конструктивными особенностями элемента, т. е, размерами, формой, наличием концентраторов, состоянием поверхности;
- условиями при нагружении: температурой, скоростью, повторяемостью нагрузки и др.
Конструкционные материалы в процессе деформирования вплоть до разрушения ведут себя по разному. Пластичное поведение характеризуется существенным изменением формы и размеров, при этом к моменту разрушения развиваются значительные деформации, не исчезающие после снятия нагрузки. Такие материалы называют пластичными. При хрупком поведении разрушение наступает при весьма малых деформациях, и материалы с такими свойствами называют хрупкими. Однако одни и те же конструкционные материалы, находящиеся в различных условиях деформирования, ведут себя по разному: при одних условиях проявляют себя как пластичные материалы, при других - как хрупкие. В связи с этим, основные макромеханические характеристики материалов - упругость, пластичность, вязкость и др. правильнее относить не к их свойствам, а к состояниям материала.