Измерения, основные характеристики измерений

Измерение является одной из самых древнейших операций в процессе познания человеком окружающего материального мира. Вся история цивилизации представляет собой непрерывный процесс становления и развития измерений, совершенствования средств методов и измерений, повышения их точности и единообразия мер.

В процессе своего развития человечество прошло путь от измерений на основе органов чувств и частей человеческого тела до научных основ измерений и использования для этих целей сложнейших физических процессов и технических устройств. В настоящее время измерениями охватываются все физические свойства материи практически независимо от диапазона изменения этих свойств. С развитием человечества измерения приобретали все большее значение в экономике, науке, технике, в производственной деятельности. Многие науки стали называться точными благодаря тому, что они могут устанавливать с помощью измерений количественные соотношения между явлениями природы. По существу, весь прогресс науки и техники неразрывно связан с возрастанием роли и совершенствованием искусства измерений. Д.И. Менделеев говорил, что «наука начинается с тех пор, как начинают измерять. Точная наука немыслима без меры».

Не меньшее значение имеют измерения в технике, производственной деятельности, при учете материальных ценностей, при обеспечении безопасных условий труда и здоровья человека, в сохранении окружающей среды. Современный научно-технический прогресс невозможен без широкого использования средств измерений и проведения многочисленных измерений.

В нашей стране проводится более десятки миллиардов измерений в день, свыше 4 млн. человек считают измерение своей профессией. Доля затрат на измерения составляет (10-15) % всех затрат общественного труда, достигая в электронике и точном машиностроении (50-70) %. В стране используется около миллиарда средств измерений. При создании современных электронных систем (ЭВМ, интегральных схем и т. п.) до (60-80) % затрат приходится на измерения параметров материалов, компонентов и готовых изделий.

Все это говорит о том, что невозможно переоценить роль измерений в жизни современного общества.

Хотя человек проводит измерения с незапамятных времен и интуитивно этот термин представляется понятным, точно и правильно определить его не просто. Об этом говорит, например, дискуссия по вопросам понятия и определения измерения, прошедшая не так давно на страницах журнала «Измерительная техника». В качестве примера ниже приводятся различные определения понятия «измерение», взятые из литературы и нормативных документов разных лет.

1 Измерением называется познавательный процесс, заключающийся в сравнении путем физического эксперимента данной величины с некоторым ее значением, принятым за единицу сравнения (М.Ф. Маликов, Основы метрологии, 1949 г.).

2 Нахождение значения физической величины опытным путем с помощью специальных технических средств (ГОСТ 16263-70 по терминам и определениям метрологии, ныне не действующий).

3 Совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины (Рекомендации по межгосударственной стандартизации РМГ 29-99 Метрология. Основные термины и определения, 1999 г).

4 Совокупность операций, имеющих целью определить значение величины (Международный словарь по терминам в метрологии, 1994 г.).

Из рассмотрения приведенных определений понятия «измерение» наиболее предпочтительным, включающим в себя в той или иной мере все другие приведенные определения, следует считать определение, приведенное в РМГ 29-99. В нем учтена техническая сторона измерения как совокупность операций по применению технического средства, показана метрологическая суть измерения как процесса сравнения с размером единицы (мерой) и представлена познавательная сторона измерения как процесса получения значения величины.

Приведенные выше определения измерения могут быть выражены уравнением, которое в метрологии называется основным уравнением измерений:

X={X}[X],

где X – измеряемая величина;

{X} – числовое значение измеряемой величины;

[X] – единица измерения.

Во всех определениях измерения присутствует понятие величины, или более строго, физической величины.