Контроль изоляции сети постоянного тока
Нарушение изоляции относительно земли сети постоянного тока может привести к образованию обходных цепей и ложным отключениям оборудования (см. гл. 14). Поэтому все установки постоянного тока оборудуются устройствами непрерывного контроля состояния изоляции сети постоянного тока относительно земли
Схема простейшего контроля, приведенная на рис. 4-2, состоит из двух вольтметров, включенных между каждым полюсом и землей.
В нормальных условиях, когда сопротивления изоляции каждого полюса относительно земли одинаковы, т. е.
напряжение каждого полюса относительно земли равно половине напряжения между полюсами, т. е.
![]() |
Если один из полюсов, например плюс, замкнется на землю, т. е.
то соответственно напряжение
также станет равным нулю, а напряжение
возрастет до полного напряжения между полюсами, т. е.
Следовательно, при понижении сопротивления изоляции на одном из полюсов напряжение этого полюса относительно земли, нормально равное 0,5U, понижается, а напряжение другого полюса относительно земли увеличивается на ту же величину.
Для обеспечения достаточной чувствительности схемы сопротивление вольтметров должно быть соизмеримо с сопротивлением изоляции сети постоянного тока относительно земли. Удовлетворительные результаты получаются при сопротивлении вольтметров 50—100 тыс. Ом.
При помощи кнопок и вольтметров можно определить величину сопротивления изоляции сети относительно земли. Для этого поочередно размыкаются кнопки
и записываются показания вольтметров
. По полученным значениям напряжений и зная сопротивление вольтметров rB, определяют сопротивление изоляции сети относительно земли по формулам:
В эксплуатации используются различные устройства контроля изоляции сети постоянного тока относительно земли как периодического, так и непрерывного действия. Схема одного из устройств непрерывного автоматического контроля приведена на рис. 4-3. Устройство состоит из двух равных по величине сопротивлений r1 и r2, двустороннего магнитоэлектрического микроамперметра и поляризованного реле РП. Из рис. 4-3, б видно, что сопротивления r1 и r2 образуют с сопротивлениями схему мостика, и диагональ которого между точками a и б включены прибор и реле (на рис. 4-3, б для упрощения показан только прибор). Если сопротивления изоляции полюсов относительно земли одинаковы, т. е.
то напряжение между точками a и б мостика равно нулю и ток через прибор не проходит.
При понижении сопротивления изоляции на минусе, т. е. при уменьшении потенциал точки б станет ниже потенциала точки а и через прибор и реле пойдет ток в направлении от точки а к точке б, что вызовет соответствующее отклонение стрелки прибора и срабатывание реле. При понижении сопротивления изоляции на плюсе ток будет проходить в противоположном направлении и, следовательно, отклонение стрелки прибоа также будет противоположным.
Симметричное понижение сопротивления изоляции на обоих полюсах можно обнаружить по прибору при поочередном нажатии кнопок . При этом прибор, отградуированный непосредственно в килоомах, укажет величину сопротивления изоляции полюсов относительно земли.
2.Классификация электрических сетей
Классификация электрических сетей может осуществляться:
· По роду тока
· По номинальному напряжению
· Конфигурации схемы сети
· По выполняемым функциям
· По характеру потребителя
· По конструктивному выполнению
По роду тока различаются сети переменного и постоянного тока.
По напряжению: сверхвысокого напряжения - Uном 330 кВ, высокого напряжения - Uном = 3 - 220 кВ, низкого напряжения - Uном 1 кВ.
По конфигурации сети делятся на замкнутые и разомкнутые.
![]() | ||||
Рис.1.2. Пример замкнутой (а) и разомкнутой (б) сети | ||||
По выполняемым функциям различают системообразующие, питающие и распределительные сети.
Системообразующие сети напряжением 330-1150 кВ осуществляют функции формирования объединенных энергосистем, объединяя мощные электростанции и обеспечивая их функционирование как единого объекта управления, и одновременно обеспечивают передачу электроэнергии от мощных электростанций. Системообразующие сети осуществляют системные связи, т.е. связи большой протяженности в энергосистемах. Режимомсистемообразующих сетей управляет диспетчер объединенного диспетчерского управления (ОДУ). Сети напряжением 330-1150 кВ, связывающие энергосистемы, называют межсистемными.
Питающие (районные) сети предназначены для передачи электроэнергии от подстанций системообразующей сети и частично от шин 110-220 кВ электростанций к центрам питания (ЦП) распределительных сетей – районным подстанциям. Питающие сети обычно замкнутые.
Распределительные (местные) сети предназначены для передачи электроэнергии на небольшие расстояния от шин низшего напряжения районных подстанций к промышленным, городским, сельским потребителям. Такие сети обычно работают в разомкнутом режиме. Различают распределительные сети высокого, (Uном > 1 кВ) и низкого (Uном < l кВ) напряжения. По характеру потребителей распределительные сети подразделяются на промышленные, городские и сети сельскохозяйственного назначения.
Для электроснабжения больших промышленных предприятий и крупных городов осуществляются глубокие вводы высокого напряжения, т. е. сооружение подстанций с первичным напряжением 110—500 кВ вблизи центров нагрузок.
Линейная арматура
Линейную арматуру, применяемую при закреплении проводов в гирляндах подвесных изоляторов, можно подразделить по назначению на пять основных видов:
1. Зажимы, служащие для закрепления проводов и тросов, подразделяющиеся на поддерживающие, подвешиваемые на промежуточных опорах, и натяжные, применяемые на опорах анкерного типа.
2. Сцепная арматура (скобы, серьги, ушки, коромысла), служащая для соединения зажимов с изоляторами, для подвески гирлянд на опорах и для соединения многоцепных гирлянд друг с другом.
3. Защитная арматура (кольца), монтируемая на гирляндах линий напряжением 330 кВ и выше, предназначенная для более равномерного распределения напряжения между отдельными изоляторами гирлянды и для защиты их от повреждения дугой при перекрытиях.
4. Соединительная арматура, служащая для соединения проводов и тросов в пролете, а также для соединения проводов в шлейфах на опорах анкерного типа.
5. Распорки, применяемые для соединения друг с другом проводов расщепленной фазы. Поддерживающие зажимы состоят из лодочки, в которую укладывается провод, плашек и болтов (или болта) для за- крепления провода в лодочке, пружин, цапф или кронштейнов для крепления зажима в гирлянде.