Методика выполнения работы. Пример 1.1. Предприятие химической промышленности выпускает соляную и серную кислоту

Примеры задач ЛП

Пример 1.1. Предприятие химической промышленности выпускает соляную и серную кислоту. Выпуск одной тонны соляной кислоты – 25 денежных единиц (ден. ед.)., выпуск одной тонны серной кислоты – 40 ден. ед. Для выполнения государственного заказа необходимо выпустить не менее 200 т соляной и не менее 100 т серной кислоты. Кроме того, необходимо учитывать, что выпуск кислот связан с образованием опасных отходов. При выпуске одной тонны соляной кислоты образуется 0,5 т опасных отходов, при выпуске одной тонны серной кислоты – 1,2 т опасных отходов. Общее количество опасных отходов не должно превышать 600 т, так как превышение этого ограничения приведет к выплате предприятием крупного штрафа.

Требуется определить, сколько соляной и серной кислоты должно выпустить предприятие, чтобы получить максимальную прибыль.

Составим математическую модель задачи. Для этого введем переменные. Обозначим через x1 количество выпускаемой соляной кислоты (в тоннах), через x2 – количество серной кислоты.

Составим ограничения, связанные с необходимостью выполнения государственного заказа. Предприятию необходимо выпустить не менее 200 т соляной кислоты. Это ограничение можно записать следующим образом: x1 200. Аналогично составим ограничение, устанавливающее, что предприятие должно выпустить не менее 100 т серной кислоты: x2 100.

Составим ограничение на опасные отходы. При выпуске одной тонны соляной кислоты образуется 0,5 т опасных отходов; значит, общее количество опасных отходов при выпуске соляной кислоты составит 0,5x1 т. При выпуске серной кислоты образуется 1,2x2 т опасных отходов. Таким образом, общее количество опасных отходов составит 0,5x1+1,2x2 т. Эта величина не должна превышать 600 т. Поэтому можно записать следующее ограничение: 0,5x1+1,2x2 600.

Кроме того, переменные по своему физическому смыслу не могут принимать отрицательных значений, так как они обозначают количество выпускаемых кислот. Поэтому необходимо учитывать ограничения неотрицательности: x1 0; x2 0.

В данной задаче требуется определить выпуск кислот, при котором прибыль будет максимальной. Прибыль от выпуска одной тонны соляной кислоты составляет 25 ден. ед.; значит прибыль от выпуска соляной кислоты составит 25x1 ден. ед. Прибыль от выпуска серной кислоты составит 40x2 ден. ед. Таким образом, общая прибыль от выпуска кислот составит 25x1+40x2 ден. ед. Требуется найти такие значения переменных x1 и x2, при которых эта величина будет максимальной. Таким образом, целевая функция для данной задачи будет иметь следующий вид:

Е=25x1+40x2→ max.

Приведем полную математическую модель рассматриваемой задачи:

X1 200

x2 100

0,5x1+1,2x2 600

x1 0; x2 0

 

Е=25x1+40x2→ max.

 

В этой задаче имеется два ограничения «больше или равно» и одно ограничение «меньше или равно». Целевая функция подлежит максимизации.

Пример 1.2. Пусть в условиях задачи 1.1 из-за ужесточения требований к экологической безопасности требуется свести к минимуму количество опасных отходов. В то же время необходимо учитывать, что для того, чтобы производство кислот было экономически целесообразным, необходимо получить прибыль не менее 20 тыс. ден. ед.

Математическая модель такой задачи имеет следующий вид:

x1 200

x2 100

25x1+40x2 20000

x1 0; x2 0

 

Е= 0,5x1+1,2x2 → min.

 

Третье ограничение в этой модели устанавливает, что прибыль от выпуска кислот должна составлять не менее 20 тыс. ден.ед. Целевая функция представляет собой количество опасных отходов; эта величина подлежит минимизации.

 

Пример 1.3. Задача о размещении средств

Пусть собственные средства банка вместе с депозитами в сумме составляют 100 млн долл. Часть этих средств, но не менее 35 млн долл., должна быть размещена в кредитах. Кредиты являются неликвидными активами банка, так как в случае непредвиденной потребности в наличности обратить кредиты в деньги без существенных потерь невозможно.

Другое дело ценные бумаги, особенно государственные. Их можно в любой момент продагь, получив некоторую прибыль или, во всяком случае, без большого убытка. Поэтому существует правило, согласно которому коммерческие банки должны покупать в определенной пропорции ликвидные активы - ценные бумаги, чтобы компенсировать неликвидность кредитов. В нашем примере ликвидное ограничение таково: ценные бумаги должны составлять не менее 30% средств, размещенных в кредитах и ценных бумагах.

Обозначим через X1 средства (млн долл.), размещенные в кредитах, через X2 - средства, вложенные в ценные бумаги. Цель банка состоит в том, чтобы получить максимальную прибыль от кредитов и ценных бумаг:

f(x) = С1 Х1 + С2 Х2, где С1 - доходность кредитов, С2 – доходность ценных бумаг.

Пример 1.4 Задача о размещении производственных заказов

Необходимо в планируемом периоде обеспечить производство300 тыс. однородных новых изделий, которые могут выпускаться на четырех филиалах предприятия. Для освоения этого нового вида изделий нужны определенные капитальные вложения. Разработанные для каждого филиала предприятия проекты освоения нового вида изделия характеризуются величинами удельных капитальных вложений и себестоимостью единицы продукции в соответствии с таблицей.

Себестоимость производства и удельные капиталовложения для каждого из филиалов условно приняты постоянными, т.е. потребность в капитальных вложениях и общие издержки будут изменяться пропорционально изменению объемов производства изделий.

Предположим, что на все филиалы предприятие для освоения 300 тыс. новых изделий может выделить 18 млн руб. Необходимо найти такой вариант распределения объемов производства продукции и капитальных вложений по филиалам, при котором суммарная стоимость изделий

будет минимальной.

Модель задачи.

Введем следующие обозначения: