Уравнения, не содержащие явно искомой функции
и ее производных до порядка k – 1 включительно.

Это уравнения вида: 
В уравнениях такого типа возможно понижение порядка на k единиц. Для этого производят замену переменной:

Тогда получаем: 
Теперь допустим, что полученное дифференциальное уравнение проинтегрировано и совокупность его решений выражается соотношением:

Делая обратную подстановку, имеем:

 Интегрируя полученное соотношение последовательно k раз, получаем окончательный ответ:

Пример. Найти общее решение уравнения 
 .
Применяем подстановку 


Произведя обратную замену, получаем:


 Общее решение исходного дифференциального уравнения:

Отметим, что это соотношение является решением для всех значений переменной х кроме значения х =0.
Уравнения, не содержащие явно независимой переменной.
Это уравнения вида 
Порядок таких уравнений может быть понижен на единицу с помощью замены переменных 

 и т.д.
Подставляя эти значения в исходное дифференциальное уравнение, получаем:

Если это уравнение проинтегрировать, и 
 - совокупность его решений, то для решения данного дифференциального уравнения остается решить уравнение первого порядка:


Пример. Найти общее решение уравнения 
Замена переменной: 

1) 
Для решения полученного дифференциального уравнения произведем замену переменной: 



С учетом того, что 
 , получаем:



Общий интеграл имеет вид: 

2) 
 
Таким образом, получили два общих решения.
Линейные дифференциальные уравнения высших порядков.
Определение. Линейным дифференциальным уравнением n – го порядка называется любое уравнение первой степени относительно функции у и ее производных 
 вида:


где p0, p1, …,pn – функции от х или постоянные величины, причем p0 ¹ 0.
Левую часть этого уравнения обозначим L(y).

Определение. Если f(x) = 0, то уравнение L(y) = 0 называется линейным однороднымуравнением, если f(x) ¹ 0, то уравнение L(y) = f(x) называется линейным неоднородным уравнением, если все коэффициенты p0, p1, p2, … pn – постоянные числа, то уравнение L(y) = f(x) называется линейным дифференциальным уравнением высшего порядка с постоянными коэффициентами.
Отметим одно важное свойство линейных уравнений высших порядков, которое отличает их от нелинейных. Для нелинейных уравнений частный интеграл находится из общего, а для линейных – наоборот, общий интеграл составляется из частных. Линейные уравнения представляют собой наиболее изученный класс дифференциальных уравнений высших порядков. Это объясняется сравнительной простотой нахождения решения. Если при решении каких – либо практических задач требуется решить нелинейное дифференциальное уравнение, то часто применяются приближенные методы, позволяющие заменить такое уравнение “близким” к нему линейным.
Рассмотрим способы интегрирования некоторых типов линейных дифференциальных уравнений высших порядков.