Диэлектрическая проницаемость
Лекция №19
- Диэлектрическая проницаемость
- Природа электропроводности газообразных, жидких и твердых диэлектриков
Диэлектрическая проницаемость
Относительная диэлектрическая проницаемость, или диэлектрическая проницаемость ε— один из важнейших макроскопических электрических параметров диэлектрика. Диэлектрическая проницаемостьε количественно характеризует способность диэлектрика поляризоваться в электрическом поле, а также оценивает степень его полярности; ε является константой диэлектрического материала при данной температуре и частоте электрического напряжения и показывает, во сколько раз заряд конденсатора с диэлектриком больше заряда конденсатора тех же размеров с вакуумом.
Диэлектрическая проницаемость определяет величину электрической емкости изделия (конденсатора, изоляции кабеля и т.п.). Для плоского конденсатора электрическая емкость С, Ф, выражается формулой (1)
где S— площадь измерительного электрода, м2; h — толщина диэлектрика, м. Из формулы (1) видно, что чем больше величина ε используемого диэлектрика, тем больше электрическая емкость конденсатора при тех же габаритах. В свою очередь, электрическая емкость С является коэффициентом пропорциональности между поверхностным зарядом QК, накопленным конденсатором, и приложенным к нему электрическим на-
пряжением U (2):
Из формулы (2) следует, что электрический заряд QК, накопленный конденсатором, пропорционален величине ε диэлектрика. Зная QК игеометрические размеры конденсатора, можно определить ε диэлектрического материала для данного напряжения.
Рассмотрим механизм образования заряда QК на электродах конденсатора с диэлектриком и из каких составляющих складывается этот заряд. Для этого возьмем два плоских конденсатора одинаковых геометрических размеров: один — с вакуумом, другой — с межэлектродным пространством, заполненным диэлектриком, и подадим на них одинаковое электрическое напряжение U (рис. 1). На электродах первого конденсатора образуется заряд Q0, на электродах второго — QК. В свою очередь, заряд QК является суммой зарядов Q0 и Q (3):
Заряд Q0 образован внешним полем Е0 путем накопления на электродах конденсатора сторонних зарядов с поверхностной плотностью σ0. Q — это дополнительный заряд на электродах конденсатора, создаваемый источником электрического напряжения для компенсации связанных зарядов, образовавшихся на поверхности диэлектрика.
В равномерно поляризованном диэлектрике заряд Q соответствует величине поверхностной плотности связанных зарядов σ. Заряд σ образует поле Есз, направленное противоположно полю ЕО .
Диэлектрическую проницаемость рассматриваемого диэлектрика можно представить как отношение заряда QК конденсатора, заполненного диэлектриком, к заряду Q0 такого же конденсатора с вакуумом (3):
Из формулы (3) следует, что диэлектрическая проницаемость ε — величина безразмерная, и у любого диэлектрика она больше единицы; в случае вакуума ε = 1. Из рассмотренного примера также
видно, что плотность заряда на электродах конденсатора с диэлектриком в ε раз больше плотности заряда на электродах конденсатора с вакуумом, а напряженности при одинаковых напряжениях для обо
их конденсаторов одинаковы и зависят только от величины напряжения U и расстояния между электродами (Е = U /h).
Кроме относительной диэлектрической проницаемости ε различают абсолютную диэлектрическую проницаемость εа, Ф/м, (4)
которая не имеет физического смысла и используется в электротехнике.
Относительное изменение диэлектрической проницаемости εr при повышении температуры на 1 К называется температурным коэффициентом диэлектрической проницаемости.
ТКε = 1/ εr d εr/dT К-1 Для воздуха при 20°С ТК εr = -2.10-6К-
Электрическое старение в сегнетоэлектриках выражается в уменьшении εr со временем. Причиной является перегруппировка доменов.
Особенно резкое изменение диэлектрической проницаемости со временем наблюдается при температурах, близких к точке Кюри. Нагревание сегнетоэлектриков до температуры более точки Кюри и последующее охлаждение возвращает εr к прежнему значению. Такое же восстановление диэлектрической проницаемости можно осуществить, воздействуя на сегнетоэлектрик электрическим полем повышенной напряженности.
Для сложных диэлектриков – механической смеси двух компонентов с разным εr в первом приближении : εrх = θ1 · εr1х ·θ· εr2х ,где θ – обьемная концентрация компонентов смеси, εr - относительная диэлектрическая проницаемость компонента смеси.
Поляризация диэлектрика может быть вызвана: механическими нагрузками (пьезополяризация в пьезоэлектриках); нагревом (пирополяризация в пироэлектриках); светом (фотополяризация).
Поляризованное состояние диэлектрика в электрическом поле Е характеризуется электрическим моментом единицы объема, поляризованностью Р, Кл/м2, которая связана с его относительной диэлектрической проницаемостью eг : Р = e0 (eг - 1)Е, где e0 = 8,85∙10-12 Ф/м. Произведение e0∙eг =e, Ф/м, называют абсолютной диэлектрической проницаемостью. В газообразных диэлектриках eг мало отличается от 1,0, в неполярных жидких и твердых достигает 1,5 — 3,0, в полярных имеет большие значения; в ионных кристаллах eг — 5-МО, а в имеющих перовскитовую кристаллическую решетку достигает 200; в сегнетоэлектриках eг - 103 и больше.
В неполярных диэлектриках с ростом температуры eг незначительно уменьшается, в полярных изменения связаны с преобладанием того или иного вида поляризации, в ионных кристаллах увеличивается, в некоторых сегнетоэлектриках при температуре Кюри достигает 104 и больше. Температурные изменения eг характеризуют температурным коэффициентом. Для полярных диэлектриков характерным является уменьшение eг в области частот, где время т на поляризацию соизмеримо с Т/2.