Декодирование линейного кода по синдрому

Путь - матрица размера и ранга над полем . Эта матрица задает линейное отображение пространства в пространство по формуле . Ядро этого линейного отображения или множество решений уравнения , образующее подпространство пространства , является линейным кодом. Можно рассмотреть разбиение пространства на классы равнообразности. В один класс входят все элементы , которые при отображении переходят в один и тот же элемент пространства . Элемент пространства , в который переходят все элементы одного класса, называется синдромом. Pис.7.8 иллюстрирует разбиение пространства на классы равнообразности.

Отображение является отображением на все пространство . Для систематической матрицы H это практически очевидно. Действительно, для любого можно найти (построить) , такой, что .


Рис. 7.8.Разбиение пространства Bn на классы равнообразности

Произведение называется синдромом [29], [33]. Фактически, синдромом вектора является образ этого вектора при отображении - . Все векторы , имеющие один синдром, образуют класс. Так как синдром имеет размерность , всего существует классов (если проверочная матрица имеетранг , в частности, если матрица имеет систематический вид). Из определения линейного кода следует, что класс, которому соответствует нулевой синдром, является кодом . Каждый класс , отличный от кода, порождается "сдвигом" кода на один из векторов класса . Действительно, если ., то есть , тогда и, следовательно, и , где - кодовое слово. Таким образом, любой некодовый вектор, имеющий синдром , можно представить в виде суммы кодового вектора и вектора, имеющего синдром . Представление такого вида не является единственным. Некодовый вектор в этой сумме можно рассматривать как вектор ошибок, произошедших в тех разрядах кодового слова , в которых соответствующие компоненты вектора равны 1. Из всех векторов ошибок, имеющих один синдром, наиболее вероятным является вектор (векторы) с минимальным весом (числом единичных компонент). Такой вектор (векторы) называется лидером класса.

Алгоритм декодирования заключается в следующем. Если получен вектор и , считаем, что ошибкам соответствует наиболее вероятный вектор из класса , то есть лидер класса . Тогда декодирование осуществляется ввектор , получающийся из принятого вектора удалением лидера.

Рассмотрим пример построения кода по заданной проверочной матрице и декодирования полученного сообщения по синдрому. Пусть дана проверочная матрица . Запишем уравнение для определения кодовых векторов (слов) для данной матрицы:

и которые можно рассматривать как информационные разряды, задаются произвольно (всего 4 варианта 00, 01, 10, 11), а проверочные разряды и определяются через и . В итоге все кодовые слова определяются из выражения

где и - информационные разряды, а - порождающая матрица, столбцами которой являются кодовые векторы.

Кодовые слова, рассматриваемые как векторы-столбцы, образуют матрицу кода

Расстояние кода равно минимальному весу ненулевого слова .

Найдем смежные классы, которые состоят из векторов пространства , имеющих одинаковый синдром, и выберем в каждом классе лидера (вектор из класса с минимальным весом).

Синдромом является любое возможное значение произведения .

В данном случае имеется 4 синдрома: .Каждому синдрому соответствует смежный класс, синдром соответствует коду. Смежные классы (столбцы матриц) для каждого синдрома и выбранные лидеры приведены в таблице.

Синдром
Класс смежности
Лидер

В третьем смежном классе - два потенциальных лидера с весом (нормой), равным 1. Один из них выбирается в качестве лидера произвольно.

Рассмотрим на этом примере процесс декодирования полученного вектора (слова) с использованием синдромов. Пусть передавался кодовый вектор и в процессе переачи произошла ошибка в первом разряде. Это означает, что на приемном конце был получен вектор , полученный из переданного вектора в результате добавления вектора ошибки (ошибка в первом разряде). Определим синдром, вычислив произведение . В данном случае получим . Это означает, что полученный вектор водит в четвертый смежный класс (см. таблицу). Лидером этого смежного класса является вектор , соответствующий данному синдрому. Вычитая (добавляя) лидер к принятому вектору, производим декодирование В данном случае декодирование выполнено правильно.

 



ирование выполнено правильно.