Необходимый уровень подготовки студентов

1. Знать понятия: эквивалент, число эквивалентности, количество вещества эквивалента, молярная масса эквивалента.

2. Уметь выражать связь между молярной массой эквивалента, количеством вещества эквивалента, массой и молярной массой вещества.

3. Знать закон эквивалентов, уметь применять его для нахождения масс и молярных масс веществ, участвующих или образующихся в реакции.

4. Уметь определять молярную массу эквивалента элемента, эквивалент и молярную массу эквивалента вещества в реакции.

Задания для самоконтроля

1. Когда количество вещества эквивалента равно количеству вещества?

2. Определить молярную массу эквивалента Fe(OH)2Cl в реакциях: a) Fe(OH)2Cl + NaOH = Fe(OH)3 + NaCl; 6) Fe(OH)2Cl + 2HCl = FeCl3 + 2 H2O.

3. Почему молярная масса элемента постоянна, а молярная масса его эквивалента может изменяться?

4. Может ли молярная масса эквивалента элемента или вещества быть больше его молярной массы и почему?

5. Почему при расчетах масс реагентов по молярным массам их эквивалентов не нужно знать значения коэффициентов в уравнении реакции?

6. Найти массу алюминия, если при его полном растворении в кислоте выделяется такое же количество водорода, что и при растворении 1,752 г цинка. Молярная масса эквивалента цинка равна 32,69 г/моль, молярная масса эквивалента алюминия - 8,99 г/моль.

7. Для нейтрализации кислоты гидроксидом калия на ее 1,866 г потребовалось 15 г гидроксида калия, молярная масса эквивалента которого равна 56 г/моль. Вычислите молярную массу эквивалента кислоты.

 

 

Лабораторная работа №3

 

Тема: Основные классы неорганических соединений: оксиды, основания и амфотерные гидроксиды

Цель работы: изучить классификацию, номенклатуру, получение и химические свойства оксидов, оснований и амфотерных гидроксидов.

Оборудование и реактивы:спиртовка, штатив с бюреткой, держатель для пробирок, пинцет, шпатели, фильтровальная бумага, пробирки, пипетки, стеклянная трубочка, фарфоровая чашка, индикаторы: фенолфталеин и метиловый оранжевый, дистиллированная вода, порошкообразные CuO, MgO, CaO, ZnO, металлические натрий, 0,5н. растворы CuSO4, Al2(SO4)3, 2н. растворы NaOH, H2SO4, HCl, 30% раствор NaOH.

 

Теоретические пояснения

Все неорганические вещества можно разделить на простые и сложные. Сложные неорганические вещества по составу делятся на бинарные (оксиды, галогениды, сульфиды, гидриды, нитриды, карбиды и другие) и многоэлементные соединения.

Оксиды – это сложные вещества, состоящие из двух элементов один из которых кислород в степени окисления -2. Соединения с фтором, где кислород проявляет положительную степень окисления, пероксиды (степень окисления – 1), супероксиды (степень окисления –1/2), озониды (степень окисления –1/3) оксидами не являются.

По функциональным признакам оксиды делятся на солеобразующие (при взаимодействии с кислотами или основаниями дают соли) и несолеобразующие, которые не образуют солей, им не соответствуют гидроксиды с той же степенью окисления элемента, что и в оксиде. Несолеобразующие оксиды могут вступать с кислотами или основаниями только в окислительно-восстановительные реакции. Примером таких оксидов служат N2O, NO, CO, OsO4 и другие.

Солеобразующие оксиды подразделяются на основные, кислотные (ангидриды кислот) и амфотерные.

Основными называют оксиды, которым соответствуют основания. К ним относятся оксиды щелочных и щелочноземельных металлов, MgO, CuO, CdO, HgO, VO, CrO, MnO, FeO, NiO, CoO, Bi2O3 и другие. Основные оксиды взаимодействуют с кислотами и кислотными оксидами с образованием солей:

 

MgO + 2HCIMgCI2 +H2O

CaO +CO2 CaCO3

 

Непосредственно с водой взаимодействуют оксиды щелочных и щелочноземельных металлов, частично MgO. При этом образуются основные гидроксиды (основания):

CaO + H2OCa(OH)2

Кислотными называют оксиды, которым соответствуют кислоты. К ним относятся CO2, SiO2, SO2, SO3, P2O5, N2O3, NO2, N2O5, B2O3, CrO3, Mn2O7 и другие.

Кислотные оксиды взаимодействуют с основаниями и основными оксидами с образованием солей:

SO3 + 2NaOHNa2SO4 + H2O

SO3 + CaO CaSO4

Многие из кислотных оксидов, за небольшим исключением (SiO2, TeO2, TeO3, MoO3, WO3 и другие), непосредственно взаимодействуют с водой, образуя кислородсодержащие кислоты:

SO2 + H2OH2SO3

SO3 + H2O H2SO4

Амфотерными называют оксиды, которым соответствуют и основания и кислоты. К данным оксидам относятся BeO, ZnO, PbO, SnO, Al2O3, Cr2O3, MnO2, SnO2, PbO2, Sb2O3 и другие.

Амфотерные оксиды взаимодействуют как с кислотами, так и с основаниями с образованием солей:

AI2O3 + 6HCI2AICI3 + 3H2O

AI2O3 + 2NaOH + 3H2O 2Na[AI(OH)4]

Эти оксиды непосредственно с водой не взаимодействуют.

Как показывают приведенные примеры, с повышением степени окисления металла основные свойства их оксидов ослабевают, а кислотные усиливаются.

Названия оксидов образуются следующим образом:

- слово «оксид» и название элемента в родительном падеже с указанием в скобках римской цифрой его степени окисления (если элемент может проявлять несколько степеней окисления);

- стехиометрические соотношения между элементами указываются при помощи греческих умножающих префиксов, присоединяемых без дефиса к названиям элементов (если в формуле свыше 12 атомов одного вида, то вместо префиксов используются цифры).

Например, СО2 – оксид углерода (IV) или диоксид углерода, N2O – оксид азота (I) или оксид диазота, Fe3O4 – оксид дижелеза (III)-железа (II) или тетраоксид трижелеза, W20O58 – 58 – оксид 20 – вольфрама.

Солеобразующим оксидам соответствуют гидроксиды – гидратированные оксиды. По кислотно-основным свойствам гидроксиды подразделяются на основные, кислотные и амфотерные.

Основные гидроксиды (основания) диссоциируют в водных растворах с образованием в качестве анионов только ОН-:

NaOH Na+ + ОН-

Ca(OH)2→ Ca2+ + 2ОН-

Они подразделяются на нерастворимые, малорастворимые в воде основания (АI(OH)3, Cu(OH)2) и хорошо растворимые основания или щелочи (KOH, NaOH, Ca(OH)2). Важнейшее химическое свойство основных гидроксидов – способность взаимодействовать с кислотами и кислотными оксидами с образованием солей.

К амфотерным относятся гидроксиды, которые реагируют как с основаниями, так и с кислотами:

АI(OH)3 +3 HCI → AICI3 + 3H2O

АI(OH)3 + NaOH → Na[AI(OH)4]