![]() |
![]() |
Категории: АстрономияБиология География Другие языки Интернет Информатика История Культура Литература Логика Математика Медицина Механика Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Транспорт Физика Философия Финансы Химия Экология Экономика Электроника |
МЕТОДЫ ОБРАБОТКИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ, СОДЕРЖАЩИЕ СЛУЧАЙНУЮ ОШИБКУ
Наиболее вероятное значение измеряемой величины – её среднее арифметическое
Средней квадратичной ошибкой отдельного результата измерения называется величина
При
Величина
где Среднеквадратичной ошибкой среднего арифметического называется величина
Это фундаментальный закон возрастания точности при росте числа измерений. Вероятность того, что (a), истинное значение Окончательный результат измерений запишется в виде
Множители, определяющие величину интервала надежности в долях Конечный результат в данном случае представляется в виде
Из сказанного следует: Величина среднеквадратичной ошибки позволяет вычислить вероятность попадания истинного значения измеряемой величины в любой интервал вблизи среднего арифметического. При
При обработке результатов измерений предлагается следующий порядок операций. При прямых измерениях: 1. Результаты каждого измерения записываются в таблицу. 2. Вычисляется среднее значение из n измерений 3. Находятся погрешности отдельного измерения
4. Вычисляются квадраты погрешностей отдельных измерений
5. Определяется среднеквадратичная погрешность среднего арифметического 6. Задается значение надежности 7. Определяется коэффициент Стьюдента 8. Находится погрешность результата измерений. 9. Окончательный результат записывается в виде:
10. Оценивается относительная погрешность результата измерений Порядок выполнения работы 1. Собрать схему. Ознакомьтесь с описанием звукового генератора и счетчика импульсов. 2. Подать на пересчетное устройство со звукового генератора сигнал. 3. Подсчитать число импульсов за 5-10 секунд (время отсекать кнопкой «Стоп» пересчетного механизма). Измерения проделать 100 раз для каждой частоты. 4. Провести обработку результатов измерений по указанной выше методике. 5. Выбрать масштаб и построить график экспериментального распределения ошибок: по оси Х отложить величину отклонения от среднего, по оси У – относительное число измерений с отклонением в заданном интервале. На том же графике нанести кривую Гаусса с экспериментально определенной дисперсией. 6. . Найти ошибку измерений для n=100, 50, 10, используя коэффициенты Стьюдента.
ЛИТЕРАТУРА
1. Зайдель А. Н. Элементарные оценки ошибок измерений. М., 1965. 2. Физический практикум под ред. В. И. Ивероновой. М., «Наука», 1968. 3. Р. И. Солоухин. Методы физических измерений. «Наука» СО АН 1975. 4. Дж. Сивайрс. Практическая физика. М., 1972. |