Основные характеристики звезд
В результате огромной работы, проделанной астрономами ряда стран в течение последних десятилетий, мы многое узнали о различных характеристиках звезд, природе их излучения и даже эволюции. Как это ни покажется парадоксальным, сейчас мы гораздо лучше представляем образование и эволюцию многих типов звезд, чем собственной планетной системы. В какой-то степени это понятно: астрономы наблюдают огромное множество звезд, находящихся на различных стадиях эволюции, в то время как непосредственно наблюдать другие планетные системы мы пока не можем.
Мы упомянули о «характеристиках» звезд. Под этим понимаются такие их основные свойства, как масса, полное количество энергии, излучаемой звездой в единицу времени (эта величина называется «светимостью» и обычно обозначается буквой L), радиус и температура поверхностных слоев. Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхностных слоев звезды 3—4 тыс. К, то ее цвет красноватый, 6—7 тыс. К — желтоватый. Очень горячие звезды с температурой свыше 10—12 тыс. К имеют белый и голубоватый цвет. В астрономии существуют вполне объективные методы измерения цвета звезд. Последний определяется так называемым «показателем цвета», равным разности фотографической и визуальной звездной величины. (Так как обычная несенсибилизированная фотографическая пластинка чувствительна к синему свету, а глаз — к желтому и зеленому, то фотографические и визуальные величины неодинаковы. Например, для красных звезд показатель цвета может достигать 1,5 звездной величины и даже больше, в то время как для голубоватых он бывает отрицательным.) Каждому значению показателя цвета соответствует определенный тип спектра. У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений (например, CN, CH, H2O и др.). По мере увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, появляются линии ионизованных атомов, а также линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных слоев около 10 тыс. К наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К — линии ионизованного кальция, расположенные на границе видимой и ультрафиолетовой частей спектра. Заметим, что такой вид имеет спектр нашего Солнца.
Последовательность спектров звезд, получающихся при непрерывном изменении температуры их поверхностных слоев, обозначается следующими буквами: O, B, A, F, G, K, M, от самых горячих к очень холодным. Каждая такая буква описывает спектральный класс. Спектры звезд настолько чувствительны к изменению температуры их поверхностных слоев, что оказалось целесообразным ввести в пределах каждого класса 10 подклассов. Например, если говорят, что звезда имеет спектр B9, то это означает, что он ближе к спектру A2, чем, например, к спектру B1.
Светимость звезды L часто выражается в единицах светимости Солнца. Последняя равна 4 • 1033 эрг/с. По своей светимости звезды различаются в очень широких пределах. Есть звезды (их, правда, сравнительно немного), светимости которых превосходят светимость Солнца в десятки и даже сотни тысяч раз. Огромное большинство звезд составляют «карлики», светимости которых значительно меньше солнечной, зачастую в тысячи раз. Характеристикой светимости является так называемая «абсолютная величина» звезды. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой — от расстояния до нее. Если отнести какую-либо звезду на условное стандартное расстояние 10 пк, то ее величина будет называться «абсолютной». Поясним это примером. Если видимая звездная величина Солнца (определяемая потоком излучения от него) равна — 26,8, то на расстоянии 10 пк (которое приблизительно в 2 млн. раз больше истинного расстояния от Земли до Солнца) его звездная величина будет около + 5. На таком расстоянии наше дневное светило казалось бы звездочкой, едва видимой невооруженным глазом (напомним, что самые слабые звезды, видимые невооруженным глазом, имеют величину + 6). Звезды высокой светимости имеют отрицательные абсолютные величины, например - 7, -5. Звезды низкой светимости характеризуются большими положительными значениями абсолютных величин, например + 10, + 12 и т. д.
Важной характеристикой звезды является ее масса. В отличие от светимости массы звезд меняются в сравнительно узких пределах. Очень мало звезд, массы которых больше или меньше солнечной в 10 раз. Масса Солнца равна 2 • 1033 г, что превышает массу Земли в 330 тыс. раз.
Еще одна существенная характеристика звезды — ее радиус. Радиусы звезд меняются в очень широких пределах. Есть звезды, по своим размерам не превышающие земной шар (так называемые «белые карлики»), есть огромные «пузыри», внутри которых могла бы свободно поместиться орбита Марса. Мы не случайно назвали такие гигантские звезды «пузырями». Из того факта, что по своим массам звезды отличаются сравнительно незначительно, следует, что при очень большом радиусе средняя плотность вещества должна быть ничтожно малой. Если средняя плотность солнечного вещества равна 1,4 г/см3, то у таких «пузырей» он может быть в миллионы раз меньше, чем у воздуха. В то же время белые карлики имеют огромную среднюю плотность, достигающую десятков и даже сотен тысяч граммов на кубический сантиметр.
Большое значение имеет исследование химического состава звезд путем тщательного анализа их спектров. При этом необходимо учитывать температуру и давление в поверхностных слоях звезд, которые также получают из спектров. Вообще спектрографические наблюдения дают наиболее полную информацию об условиях, господствующих в звездных атмосферах.
По химическому составу звезды, как правило, представляют собой водородные и гелиевые плазмы. (Плазмой называется ионизованный газ, в каждом элементе объема которого находится одинаковое количество электронов и положительных ионов.) Остальные элементы присутствуют в виде сравнительно незначительных «загрязнений». Средний химический состав наружных слоев звезды выглядит примерно следующим образом. На 10 тыс. атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, один атом углерода, 0,3 атома железа. Относительное содержание других элементов еще меньше. Хотя по числу атомов так называемые «тяжелые элементы» (т. е. элементы с атомной массой, большей, чем у гелия) занимают во Вселенной весьма скромное место, их роль очень велика. Прежде всего они в значительной степени определяют характер эволюции звезд, так как непрозрачность звездных недр для излучения существенно зависит от содержания тяжелых элементов. В то же время светимость звезды, как оказывается, тоже зависит от ее непрозрачности. Мы здесь на этих вопросах не имеем возможности остановиться. Об этом подробно написано в нашей книге «Звезды: их рождение, жизнь и смерть», к которой мы и отсылаем читателей.
Наличие во Вселенной (в частности, в звездах) тяжелых элементов имеет решающее значение для проблемы, которой посвящена эта книга. Совершенно очевидно, что живая субстанция может быть построена только при наличии тяжелых элементов и их соединений. Общеизвестна роль углерода в структуре живой материи. Не менее важны и другие элементы, например железо, фосфор. Царство живого — это сложнейшие сцепления тяжелых элементов. Мы можем поэтому со всей определенностью сформулировать следующее положение: если бы не было тяжелых элементов, не было бы и жизни. Поэтому проблема химического состава космических объектов (звезд, туманностей, планет) имеет первостепенное значение для анализа условий возникновения жизни в тех или иных областях Вселенной. Всегда ли во Вселенной были тяжелые элементы? Ниже мы будем обсуждать этот важный вопрос. Оказывается, что в далеком прошлом во Вселенной тяжелых элементов было значительно меньше, чем сейчас. Может быть, их совсем не было. Поэтому крупнейшей научной проблемой является происхождение тяжелых элементов. Эта проблема столь же важна, как проблемы происхождения звезд, планет и даже жизни.
Спектроскопические исследования показали, что имеются удивительные различия в химическом составе звезд. Так, например, горячие массивные звезды, концентрирующиеся к галактической плоскости, сравнительно богаты тяжелыми элементами, между тем как у звезд, входящих в состав шаровых скоплений, относительное содержание тяжелых элементов в десятки раз меньше. Этот важный факт находит обоснованием современных теориях эволюции звезд и звездных систем, о которых речь будет идти ниже.
Исследования последних десятилетий позволили сделать вывод, что звезды вращаются вокруг своих осей. Выяснилось, что звезды различных спектральных классов вращаются с разной скоростью. Этому очень важному для космогонии вопросу будет посвящена гл. 10.
Наконец, стоит сказать несколько слов о магнетизме звезд. Тем же спектроскопическим методом было обнаружено наличие мощных магнитных полей в атмосферах некоторых звезд. Напряженность этих полей в отдельных случаях доходит до 10 тыс. Э (эрстед), т. е. в 20 тыс. раз больше, чем магнитное поле Земли. Заметим, что в солнечных пятнах напряженность магнитных полей доходит до 3 — 4 тыс. Э. Вообще магнитные явления, как выяснилось в последние годы, играют значительную роль в физических процессах, происходящих в солнечной атмосфере. Имеются все основания полагать, что тоже самое справедливо и для звездных атмосфер. Казалось бы, к проблеме происхождения и развития жизни во Вселенной звездный магнетизм совершенно не имеет отношения. Но это только так кажется. В действительности причинная цепь явлений, приводящих в итоге к возникновению жизни на какой-нибудь планете, заброшенной в просторах Вселенной, необыкновенно сложна. В частности, существенным звеном в этой цепи должно быть само возникновение планет. И вот оказывается, что магнитные эффекты при образовании планетных систем могут иметь решающее значение. Об этом речь будет идти в гл. 10.
Мы перечислили основные характеристики звезд. Возникает вопрос: существует ли между этими характеристиками какая-нибудь связь? Такая связь, оказывается, существует. Она была обнаружена свыше 70 лет назад.
Будем изображать звезды точками на диаграмме Герцшпрунга — Рессела, где по оси абсцисс отложены спектральные классы (или соответствующие им показатели цвета), а по оси ординат — абсолютные величины, являющиеся мерой светимости соответствующих звезд (рис. 9). Из рисунка видно, что звезды лежат на этой диаграмме не беспорядочно, а образуют явно выраженные последовательности. Большинство звезд находится в пределах сравнительно узкой полосы, идущей от левого верхнего угла диаграммы к правому нижнему. Это так называемая «главная последовательность» звезд. В верхнем правом углу группируются звезды в виде довольно беспорядочной кучи. Их спектральные классы — G, K и M, а абсолютные величины находятся в пределах (+ 2) — (- 6). Они называются «красными гигантами», хотя среди них есть и желтые звезды. Наконец, в нижней левой части диаграммы мы видим небольшое количество звезд. Их абсолютные величины слабее + 10, а спектральные классы лежат в пределах от B до F. Следовательно, это очень горячие звезды с низкой светимостью. Но низкая светимость при высокой поверхностной температуре может быть, очевидно, только тогда, когда радиусы звезд достаточно малы. Таким образом, в этой части диаграммы «спектр—светимость» находятся очень маленькие горячие звезды. Такие звезды называются «белыми карликами». Именно о них речь шла в начале этой главы.
Количество точек на диаграмме «спектр—светимость», приведенной на рис 9, не дает правильного представления об относительном количестве звезд различных классов в Галактике. Так, например, звезд-гигантов с высокой светимостью на этой диаграмме непропорционально много по сравнению с «карликами» низкой светимости. Это объясняется условиями наблюдений: благодаря высокой светимости гиганты видны с очень больших расстояний, между тем как значительно более многочисленные карлики на таких расстояниях очень трудно наблюдать (если говорить о спектральных наблюдениях).
Некоторое представление об относительном количестве звезд разных последовательностей можно получить, если откладывать на диаграмме «спектр—светимость» все без исключения звезды, находящиеся от Солнца на расстоянии, не превышающем 5 пк (16,3 светового года). Такая диаграмма приведена на рис. 10. Обращает на себя внимание отсутствие хотя бы одного гиганта. Зато нижняя правая часть главной последовательности очень отчетливо выражена. Мы видим, что в этом сферическом объеме радиусом 5 пк (довольно типичном для Галактики) подавляющее большинство звезд слабее и холоднее Солнца. Это так называемые «красные карлики», лежащие на нижней правой части главной последовательности. На этой же диаграмме нанесено наше Солнце. Только три звезды (из примерно 50, находящихся в этом объеме) излучают сильнее Солнца. Это Сириус — самая яркая из звезд, видимых на небе, Альтаир и Процион. Зато на рис. 10 мы видим пять белых карликов. Из того простого факта, что в малом объеме радиусом 5 пк наблюдается столь заметное число белых карликов, следует, что число их во всей Галактике очень велико. Подсчеты показывают, что число белых карликов в нашей звездной системе по крайней мере равно нескольким миллиардам, а может быть, даже больше 10 млрд. (напомним, что полное количества звезд всех типов во всей Галактике около 150 млрд.) Число белых карликов в десятки тысяч раз больше, чем гигантов высокой светимости, столь обильно представленных на диаграмме, изображенной на рис. 9. Этот пример убедительно показывает, какую заметную роль в астрономии (так же как и в других науках о природе) играет наблюдательная селекция.
На диаграмме «спектр—светимость» (или «цвет—светимость»), кроме отмеченных главной последовательности и группировок красных гигантов и белых карликов, существуют и некоторые другие последовательности. Уже на рис. 9 намечается последовательность звезд, расположенная несколько ниже главной. Это так называемые «субкарлики». Хотя в окрестностях Солнца эти звезды сравнительно малочисленны, в центральных областях Галактики, а также в шаровых скоплениях количество их огромно. Субкарлики довольно слабо концентрируются к галактической плоскости, но зато очень сильно — к центру нашей звездной системы. По-видимому, они — самый многочисленный тип звезд в Галактике. Субкарлики отличаются от звезд главной последовательности сравнительно низким содержанием тяжелых элементов. Разница в химическом составе является причиной различия в светимостях при одинаковой температуре поверхностных слоев. (Радиусы звезд главной последовательности и последовательности субкарликов с одинаковой поверхностной температурой неодинаковы.)
То, что диаграмма «спектр—светимость» теснейшим образом связана с проблемой эволюции звезд, интуитивно чувствовалось астрономами сразу же после открытия этой диаграммы. Сначала считалось, что звезды в основном эволюционируют вдоль главной последовательности. По этим наивным представлениям первоначально образовавшаяся звезда представляет собой красный гигант, который, сжимаясь, увеличивает температуру, пока не превратится в «голубой гигант», находящийся в верхнем левом углу диаграммы «спектр—светимость». Эволюционируя вдоль главной последовательности, она становится «холоднее» и излучает меньше. Отголоском этих представлений является существующая и поныне у астрономов терминология: спектральные классы O, B, A и частично F называются «ранними», a G, K, M — «поздними». Если идти вдоль главной последовательности от спектральных классов O—B до K—M, то массы звезд непрерывно уменьшаются. Например, у звезд класса O массы достигают нескольких десятков солнечной, у звезд B - около 10.
Солнце имеет спектральный класс G2 (см. рис. 10). У звезд более поздних классов, чем Солнце, массы меньше солнечной. У карликов спектрального класса M массы примерно в 10 раз меньше, чем у Солнца. Так как вдоль главной последовательности и масса и светимость непрерывно меняются, между ними существует эмпирическое соотношение. На рис. 11 приведена зависимость между массой и светимостью для звезд главной последовательности.
.
Если считать, что звезды каким-то образом эволюционируют вдоль главной последовательности, то необходимо сделать вывод, что они непрерывно теряют значительную часть своей первоначальной массы. Такие представления сталкиваются с непреодолимыми трудностями. Хотя делались попытки построить теорию эволюции звезд вдоль главной последовательности на основе представлений о непрерывной потере ими массы, они оказались совершенно неудачными. (Разумеется, в отдельных случаях наблюдается выбрасывание вещества из поверхностных слоев звезд (например, при вспышках новых и сверхновых, а также в виде спокойного истечения, так называемого «звездного ветра»). Речь идет о невозможности объяснения эволюции звезд вдоль главной последовательности таким способом.) Правильная теория звездной эволюции, основанная на современных представлениях об источниках звездной энергии и на богатом наблюдательном материале, была развита в пятидесятых годах. Эта теория, успешно объяснившая диаграмму «спектр—светимость», будет обсуждаться в гл. 4.
Межзвездная среда
Согласно современным представлениям, звезды образуются путем конденсации весьма разреженной межзвездной газопылевой среды. Поэтому, прежде чем рассказать о путях эволюции звезд, нам придется остановиться на свойствах межзвездной среды. Этот вопрос имеет также самостоятельное значение для интересующей нас проблемы. В частности, решение вопроса об установлении различных типов связи между цивилизациями, находящимися на различных планетных системах, зависит от свойств среды, заполняющей межзвездное пространство, разделяющее эти цивилизации.
Межзвездный газ был обнаружен в самом начале текущего столетия благодаря поглощению в линиях ионизованного кальция, которое он производит в спектрах удаленных горячих звезд. (Собственные линии поглощения ионизованного кальция у таких звезд отсутствуют, так как температуры их поверхностных слоев слишком высоки.) С тех пор методы изучения межзвездного газа непрерывно улучшались и достигли высокой степени совершенства. В итоге большой многолетней работы, проделанной астрономами, сейчас свойства межзвездного газа можно считать достаточно хорошо известными. Плотность межзвездной газовой среды ничтожна. В среднем в областях межзвездного пространства, расположенных недалеко от галактической плоскости, в 1 см3 находится примерно 1 атом.
Напомним; что в таком же объеме воздуха находится 2,7 • 1019 молекул. Даже в самых совершенных вакуумных камерах концентрация атомов не меньше чем 103 см3. И все же межзвездную среду нельзя рассматривать как вакуум! Дело в том, что вакуумом, как известно, называется такая система, в которой длина свободного пробега атомов или молекул превышает характерные размеры этой системы. Однако в межзвездном пространстве средняя длина свободного пробега атомов в сотни раз меньше, чем расстояния между звездами. Поэтому мы вправе рассматривать межзвездный газ как сплошную, сжимаемую среду и применять к этой среде законы газовой динамики.
Химический состав межзвездного газа довольно хорошо исследован. Он сходен с химическим составом наружных слоев звезд главной последовательности. Преобладают атомы водорода и гелия, атомов металлов сравнительно немного. В довольно заметных количествах присутствуют простейшие молекулярные соединения (например, CO, CN). Возможно, что значительная часть межзвездного газа находится в форме молекулярного водорода. Развитие внеатмосферной астрономии открыло возможность наблюдения линий молекулярного водорода в далекой ультрафиолетовой части спектра.
Физические свойства межзвездного газа существенно зависят от того, находится ли он в сравнительной близости от горячих звезд или, напротив, достаточно удален от них. Дело в том, что ультрафиолетовое излучение горячих звезд, полностью ионизует водород на огромных расстояниях. Так, звезда классаO5 ионизует вокруг себя водород в гигантской области радиусом около 100 пк.
Температура межзвездного газа в таких областях (определяемая как характеристика беспорядочных тепловых движений частиц) достигает 10 тыс. К. При этих условиях межзвездная среда излучает отдельные линии в видимой части спектра, в частности красную водородную линию. Эти области межзвездной среды носят название «зоны HII». Однако большая часть межзвездной среды достаточно удалена от горячих звезд. Водород там не ионизован. Температура газа низкая, около 100 К или ниже. Именно здесь имеется значительное количество молекул водорода.
Кроме газа, в состав межзвездной среды входит космическая пыль. Размеры таких пылинок составляют 10-4—10-5 см. Они являются причиной поглощения света в межзвездном пространстве, из-за которого мы не можем наблюдать объекты, находящиеся в галактической плоскости на расстояниях, больших 2—3 тыс. пк. К счастью, космическая пыль, так же как и связанный с ней межзвездный газ, сильно концентрируется к галактической плоскости. Толщина газопылевого слоя составляет всего лишь около 250 пк. Поэтому излучение от космических объектов, направления на которые составляют значительные углы с галактической плоскостью, поглощается незначительно.
Межзвездные газ и пыль перемешаны. Отношение средних плотностей газа и пыли в межзвездном пространстве равно приблизительно 100:1. Наблюдения показывают, что пространственная плотность газопылевой межзвездной среды меняется весьма нерегулярно. Для этой среды характерно резко выраженное «клочковатое» распределение. Она существует в виде облаков (в которых плотность раз в 10 больше средней), разделенных областями, где плотность ничтожно мала. Эти газопылевые облака сосредоточены преимущественно в спиральных ветвях Галактики и участвуют в галактическом вращении. Отдельные облака имеют скорости в 6—8 км/с, о чем уже говорилось. Наиболее плотные из таких облаков наблюдаются как темные или светлые туманности.
Значительное количество сведений о природе межзвездного газа было получено за последние три десятилетия благодаря весьма эффективному применению радиоастрономических методов. Особенно плодотворными были исследования межзвездного газа на волне 21 см. Что это за волна? Еще в сороковых годах теоретически было предсказано, что нейтральные атомы водорода в условиях межзвездного пространства должны излучать спектральную линию с длиной волны 21 см. Дело в том, что основное, самое «глубокое» квантовое состояние атома водорода состоит из двух очень близких уровней. Эти уровни различаются ориентациями магнитных моментов ядра атома водорода (протона) и вращающегося вокруг него электрона. Если моменты ориентированы параллельно, получается один уровень, если антипараллельно — другой. Энергия одного из этих уровней несколько больше другого (на величину, равную удвоенному значению энергии взаимодействия магнитных моментов электрона и протона). Согласно законам квантовой физики, время от времени должны самопроизвольно происходить переходы с уровня большей энергии на уровень меньшей энергии. При этом будет излучаться квант с частотой, пропорциональной разности энергий уровней. Так как последняя в нашем случае очень мала, то и частота излучения будет низкой. Соответствующая длина волны будет равна 21 см.
Расчеты показывают, что такие переходы между уровнями атома водорода происходят чрезвычайно редко: в среднем для одного атома имеет место один переход в 11 млн. лет! Чтобы почувствовать ничтожную величину вероятности таких процессов, достаточно сказать, что при излучении спектральных линий в оптическом диапазоне переходы происходят каждую стомиллионную долю секунды. И все же оказывается, что эта линия, излучаемая межзвездными атомами, имеет вполне наблюдаемую интенсивность.
Так как межзвездные атомы имеют различные скорости по лучу зрения, то из-за эффекта Доплера излучение в линии 21 см будет «размазано» в некоторой полосе частот около 1420 МГц (эта частота соответствует длине волны 21 см). По распределению интенсивности в этой полосе (так называемому «профилю линии») можно изучить все движения, в которых участвуют межзвездные атомы водорода. Таким путем удалось исследовать особенности галактического вращения межзвездного газа, беспорядочные движения отдельных его облаков, а также его температуру. Кроме того, из этих наблюдений определяется количество атомов водорода в межзвездном пространстве. Мы видим, таким образом, что радиоастрономические исследования на волне 21 см являются мощнейшим методом изучения межзвездной среды и динамики Галактики. В последние годы этим методом изучаются другие галактики, например туманность Андромеды. По мере увеличения размеров радиотелескопов будут открываться все новые возможности изучения более удаленных галактик при помощи радиолинии водорода.
В конце 1963 г. была обнаружена еще одна межзвездная радиолиния, принадлежащая молекулам гидроксила OH, с длиной волны 18 см. Существование этой линии было теоретически предсказано автором этой книги еще в 1949 г. В направлении на галактический центр интенсивность этой линии (которая наблюдается в поглощении) оказалась очень высокой. (Линия OH состоит из четырех близких по частотам компонент 1612, 1665, 1667 и 1720 МГц). Это подтверждает сделанный выше вывод, что в отдельных областях межзвездного пространства газ находится преимущественно в молекулярном состоянии.
В 1967 г. была открыта радиолиния воды H2O с длиной волны 1,35 см. Исследования газовых туманностей в линиях OH и H2O привели к открытию космических мазеров (см. следующую главу).
За последние 20 лет, протекшие после открытия межзвездной радиолинии OH, было открыто много других радиолиний межзвездного происхождения, принадлежащих различным молекулам. Полное число обнаруженных таким образом молекул уже превышает 50. Среди них особенно большое значение имеет молекула CO, радиолиния которой с длиной волны 2,64 мм наблюдается почти во всех областях межзвездной среды. Есть молекулы, радиолинии от которых наблюдаются исключительно в плотных, холодных облаках межзвездной среды. Довольно неожиданным было обнаружение в таких облаках радиолиний весьма сложных многоатомных молекул, например, CH3HCO, CH3CN и др. Это открытие, возможно, имеет отношение к волнующей нас проблеме происхождения жизни во Вселенной. Если открытия будут и дальше делаться в таком темпе, кто знает, не будут ли обнаружены нашими приборами межзвездные молекулы ДНК и РНК? (см. гл. 12).
Весьма полезным является то обстоятельство, что соответствующие радиолинии, принадлежащие различным изотопам одной и той же молекулы, имеют довольно заметно различающиеся длины волн. Это позволяет исследовать изотопный состав межзвездной среды, что имеет большое значение для изучения проблемы эволюции вещества во Вселенной. В частности, раздельно наблюдаются такие изотопные комбинации окиси углерода: 12C16O, 13C16O и 12C18O.
Области межзвездной среды, окружающей горячие звезды, где водород полностью ионизован («зоны HII»), весьма успешно исследуются при помощи так называемых «рекомбинационных» радиолиний, существование которых было теоретически предсказано еще до их открытия советским астрономом Н. С. Кардашевым, много занимавшимся также проблемой связи с внеземными цивилизациями (см. гл. 26). «Рекомбинационные» линии возникают при переходах между весьма высоко возбужденными атомами (например, между 108 и 107 уровнями атома водорода). Столь «высокие» уровни могут существовать в межзвездной среде только по причине ее чрезвычайно низкой плотности. Заметим, например, что в солнечной атмосфере могут существовать только первые 28 уровней атома водорода; более высокие уровни разрушаются благодаря взаимодействию с частицами окружающей плазмы.
Уже сравнительно давно астрономы получили ряд косвенных доказательств наличия межзвездных магнитных полей. Эти магнитные поля связаны с облаками межзвездного газа и движутся вместе с ними. Напряженность таких полей около 10-5 Э, т. е. в 100 тыс. раз меньше напряженности земного магнитного поля на поверхности нашей планеты. Общее направление магнитных силовых линий совпадает с направлением ветвей спиральной структуры Галактики. Можно сказать, что сами спиральные ветви представляют собой гигантских размеров магнитные силовые трубки.
В конце 1962 г. факт существования межзвездных магнитных полей был установлен английскими радиоастрономами путем прямых наблюдений. С этой целью исследовались весьма тонкие поляризационные эффекты в радиолинии 21 см, наблюдаемой в поглощении в спектре мощного источника радиоизлучения — Крабовидной туманности (об этом источнике см. гл. 5). (Линия поглощения 21 см, обусловленная межзвездным водородом, образуется в радиоспектре какого-либо источника совершенно таким же образом, как линии межзвездного кальция в спектрах удаленных горячих звезд.) Если межзвездный газ находится в магнитном поле, можно ожидать расщепления линии 21 см на несколько компонент, отличающихся поляризацией. Так как величина магнитного поля очень мала, это расщепление будет совершенно ничтожным. Кроме того, ширина линии поглощения 21 см довольно значительна. Единственное, что можно ожидать в такой ситуации, — это небольшие систематические различия поляризации в пределах профиля линий поглощения. Поэтому уверенное обнаружение этого тонкого эффекта — замечательное достижение современной науки. Измеренное значение межзвездного магнитного поля оказалось в полном соответствии с теоретически ожидаемым согласно косвенным данным.
Для исследований межзвездных магнитных полей применяется и радиоастрономический метод, основанный на изучении вращения плоскости поляризации радиоизлучения внегалактических источников (радиоизлучение от метагалактических источников линейно поляризовано, причем степень поляризации обычно порядка нескольких процентов. Поляризация этого радиоизлучения объясняется его синхротронной природой (см. ниже)) при его прохождении через «намагниченную» межзвездную среду («явление Фарадея»). Этим методом уже сейчас удалось получить ряд важных данных о структуре межзвездных магнитных полей. В последние годы в качестве источников поляризованного излучения для измерения межзвездного магнитного поля таким методом используются пульсары (см. гл. 5).
Межзвездные магнитные поля играют решающую роль при образовании плотных холодных газопылевых облаков межзвездной среды, из которых конденсируются звезды (см. гл. 4).
С межзвездными магнитными полями тесно связаны первичные космические лучи, заполняющие межзвездное пространство. Это частицы (протоны, ядра более тяжелых элементов, а также электроны), энергии которых превышают сотни миллионов электрон вольт, доходя до 1020 — 1021 эВ. Они движутся вдоль силовых линий магнитных полей по винтовым траекториям. Электроны первичных космических лучей, двигаясь в межзвездных магнитных полях, излучают радиоволны. Это излучение наблюдается нами как радиоизлучение Галактики (так называемое «синхротронное излучение»). Таким образом, радиоастрономия открыла возможность изучать космические лучи в глубинах Галактики и даже далеко за ее пределами. Она впервые поставила проблему происхождения космических лучей на прочный научный фундамент.
Исследователи, работавшие над проблемой происхождения жизни, до недавнего времени оставляли без внимания вопрос о первичных космических лучах. Между тем уровень жесткой радиации, вызывающей мутации, является, на наш взгляд, весьма существенным эволюционным фактором, Имеются все основания полагать, что ход эволюции жизни был бы совсем другим, если бы уровень жесткой радиации (который сейчас в значительной степени обусловлен первичными космическими лучами) был бы в десятки раз выше современного значения. Отсюда возникает важный вопрос: остается ли постоянным уровень космической радиации на какой-нибудь планете, на которой развивается жизнь? Речь идет о сроках, исчисляемых многими сотнями миллионов лет. Мы увидим в следующих главах этой книги, как современная астрофизика и радиоастрономия отвечают на этот вопрос.
Масса межзвездного газа в нашей Галактике близка к миллиарду солнечных масс, что составляет немногим больше 1 % от полной массы Галактики, обусловленной в основном звездами. В других звездных системах относительное содержание межзвездного газа меняется в довольно широких пределах. У эллиптических галактик оно очень мало, около 10-4 и даже меньше, в то время как у неправильных звездных систем (типа Магеллановых Облаков) содержание межзвездного газа доходит до 20 и даже 50%. Это обстоятельство тесно связано с вопросом об эволюции звездных систем, о чем речь будет идти в гл. 6.
Эволюция звезд
Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газопылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек.
Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газопылевой среды, служит расположение групп заведомо молодых звезд (так называемых «ассоциаций») в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ, концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных «радиоизображений» некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не можем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии «зоны HII», т. е. облака ионизованного межзвездного газа. В гл. 3 уже говорилось, что причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд — объектов заведомо молодых (см. ниже).
Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В самом деле, откуда, например, берется огромное количество энергии, необходимой для поддержания излучения Солнца примерно на наблюдаемом уровне в течение нескольких миллиардов лет? Ежесекундно Солнце излучает 4 • 1033 эрг, а за 3 млрд. лет оно излучило 4 • 1050 эрг. Несомненно, что возраст Солнца около 5 млрд. лет. Это следует хотя бы из современных оценок возраста Земли различными радиоактивными методами. Вряд ли Солнце «моложе» Земли.
В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеорных тел, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях, перейти в излучение. Как мы увидим ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени.
Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов Кельвинов).
В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно «просачивается» сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратился в гелий, то выделившееся количество энергии составит примерно 1052 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце «израсходовало» не свыше 10% своего первоначального запаса водорода.
Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газопылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие «протозвезды» наблюдаются в отдельных туманностях в виде очень темных компактных образований, так называемых глобул (рис. 12, не сканировался). Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения (см. ниже). Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты (см. гл. 9).
При сжатии протозвезды температура ее повышается и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы его поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана — Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой.. Поэтому на диаграмме «спектр—светимость» такие звезды расположатся вправо от главной последовательности, т. е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс.
В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет, вследствие чего спектр становится все более «ранним». Таким образом, двигаясь по диаграмме «спектр—светимость», протозвезда довольно быстро «сядет» на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для того, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение и газовый шар перестает сжиматься. Протозвезда становится звездой.
Чтобы пройти эту самую раннюю стадию своей эволюции, протозвездам нужно сравнительно немного времени. Если, например, масса протозвезды больше солнечной, нужно всего лишь несколько миллионов лет, если меньше — несколько сот миллионов лет. Так как время эволюции протозвезд сравнительно невелико, эту самую раннюю фазу развития звезды обнаружить трудно. Все же звезды в такой стадии, по-видимому, наблюдаются. Мы имеем в виду очень интересные звезды типа T Тельца, обычно погруженные в темные туманности.
В 1966 г. совершенно неожиданно выявилась возможность наблюдать протозвезды на ранних стадиях их эволюции. Мы уже упоминали в третьей главе этой книги об открытии методом радиоастрономии ряда молекул в межзвездной среде, прежде всего гидроксила OH и паров воды H2O. Велико же было удивление радиоастрономов, когда при обзоре неба на волне 18 см, соответствующей радиолинии OH, были обнаружены яркие, чрезвычайно компактные (т. е. имеющие малые угловые размеры) источники. Это было настолько неожиданно, что первое время отказывались даже верить, что столь яркие радиолинии могут принадлежать молекуле гидроксила. Была высказана гипотеза, что эти линии принадлежат какой-то неизвестной субстанции, которой сразу же дали «подходящее» имя «мистериум». Однако «мистериум» очень скоро разделил судьбу своих оптических «братьев» — «небулия» и «корония». Дело в том, что многие десятилетия яркие линии туманностей и солнечной короны не поддавались отождествлению с какими бы то ни было известными спектральными линиями. Поэтому их приписывали неким, неизвестным на земле, гипотетическим элементам — «небулию» и «коронию». Не будем снисходительно улыбаться над невежеством астрономов начала нашего века: ведь теории атома тогда еще не было! Развитие физики не оставило в периодической системе Менделеева места для экзотических «небожителей»: в 1927 г. был развенчан «небулий», линии которого с полной надежностью были отождествлены с «запрещенными» линиями ионизованных кислорода и азота, а в 1939 -1941 гг. было убедительно показано, что загадочные линии «корония» принадлежат многократно ионизованным атомам железа, никеля и кальция.
Если для «развенчания» «небулия» и «корония» потребовались десятилетия, то уже через несколько недель после открытия стало ясно, что линии «мистериума» принадлежат обыкновенному гидроксилу, но только находящемуся в необыкновенных условиях.
Дальнейшие наблюдения, прежде всего, выявили, что источники «мистериума» имеют исключительно малые угловые размеры. Это было показано с помощью тогда еще нового, весьма эффективного метода исследований, получившего название «радиоинтерферометрия на сверхдлинных базах». Суть метода сводится к одновременным наблюдениям источников на двух радиотелескопах, удаленных друг от друга на расстояния в несколько тысяч км. Как оказывается, угловое разрешение при этом определяется отношением длины волны к расстоянию между радиотелескопами. В нашем случае эта величина может быть ~ 3 • 10-8 рад или несколько тысячных секунды дуги! Заметим, что в оптической астрономии такое угловое разрешение пока совершенно недостижимо.
Такие наблюдения показали, что существуют по крайней мере три класса источников «мистериума». Нас здесь будут интересовать источники 1 класса. Все они находятся внутри газовых ионизованных туманностей, например в знаменитой туманности Ориона. Как уже говорилось, их размеры чрезвычайно малы, во много тысяч раз меньше размеров туманности. Всего интереснее, что они обладают сложной пространственной структурой. Рассмотрим, например, источник, находящийся в туманности, получившей название W3.
На рис. 13 приведен профиль линии OH, излучаемый этим источником. Как видим, он состоит из большого количества узких ярких линий. Каждой линии соответствует определенная скорость движения по лучу зрения излучающего эту линию облака. Величина этой скорости определяется эффектом Доплера. Различие скоростей (по лучу зрения) между различными облаками достигает ~ 10 км/с. Упомянутые выше интерферометрические наблюдения показали, что облака, излучающие каждую линию, пространственно не совпадают. Картина получается такая: внутри области размером приблизительно 1,5 секунды дуги движутся с разными скоростями около 10 компактных облаков. Каждое облако излучает одну определенную (по частоте) линию. Угловые размеры облаков очень малы, порядка нескольких тысячных секунды дуги. Так как расстояние до туманности W3 известно (около 2000 пк), то угловые размеры легко могут быть переведены в линейные. Оказывается, что линейные размеры области, в которой движутся облака, порядка 10-2 пк, а размеры каждого облака всего лишь на порядок величины больше расстояния от Земли до Солнца.
Возникают вопросы: что это за облака и почему они так сильно излучают в радиолиниях гидроксила? На второй вопрос ответ был получен довольно скоро. Оказалось, что механизм излучения вполне подобен тому, который наблюдался в лабораторных мазерах и лазерах.
Итак, источники «мистериума» — это гигантские, природные космические мазеры, работающие на волне линии гидроксила, длина которой 18 см. Именно в мазерах (а на оптических и инфракрасных частотах — в лазерах) достигается огромная яркость в линии, причем спектральная ширина ее мала. Как известно, усиление излучения в линиях благодаря такому эффекту возможно тогда, когда среда, в которой распространяется излучение, каким-либо способом «активирована». Это означает, что некоторый «сторонний» источник энергии (так называемая «накачка») делает концентрацию атомов или молекул на исходном (верхнем) уровне аномально высокой. Без постоянно действующей «накачки» мазер или лазер невозможны. Вопрос о природе механизма «накачки» космических мазеров пока еще окончательно не решен. Однако, скорее всего «накачкой» служит достаточно мощное инфракрасное излучение. Другим возможным механизмом «накачки» могут быть некоторые химические реакции.
Стоит прервать наш рассказ о космических мазерах для того, чтобы подумать, с какими удивительными явлениями сталкиваются астрономы в космосе. Одно из величайших технических изобретений нашего бурного века, играющее немалую роль в переживаемой нами теперь научно-технической революции, запросто реализуется в естественных условиях и притом — в громадном масштабе!
Поток радиоизлучения от некоторых космических мазеров настолько велик, что мог бы быть обнаружен даже при техническом уровне радиоастрономии лет 35 тому назад, т. е. еще до изобретения мазеров и лазеров! Для этого надо было «только» знать точную длину волны радиолинии OH и заинтересоваться проблемой. Кстати, это не первый случай, когда в естественных условиях реализуются важнейшие научно-технические проблемы, стоящие перед человечеством. Термоядерные реакции, поддерживающие излучение Солнца и звезд (см. ниже), стимулировали разработку и осуществление проектов получения на Земле ядерного «горючего», которое в будущем должно решить все наши энергетические проблемы. Увы, мы пока еще далеки от решения этой важнейшей задачи, которую природа решила «запросто». Полтора века тому назад основатель волновой теории света Френель заметил (по другому поводу, конечно): «Природа смеется над нашими трудностями». Как видим, замечание Френеля еще более справедливо в наши дни.
Вернемся, однако, к космическим мазерам. Хотя механизм «накачки» этих мазеров пока еще не совсем ясен, все же можно составить себе грубое представление о физических условиях в облаках, излучающих мазерным механизмом линию 18 см. Прежде всего, оказывается, что эти облака довольно плотны: в кубическом сантиметре там имеется по крайней мере 108 — 109 частиц, причем существенная (а может быть и большая) часть их — молекулы. Температура вряд ли превышает две тысячи кельвинов, скорее всего она порядка 1000 Кельвинов. Эти свойства резко отличны от свойств даже самых плотных облаков межзвездного газа. Учитывая еще сравнительно небольшие размеры облаков, мы невольно приходим к выводу, что они скорее напоминают протяженные, довольно холодные атмосферы звезд-сверхгигантов. Очень похоже, что эти облака есть не что иное, как ранняя стадия развития протозвезд, следующая сразу за их конденсацией из межзвездной среды. В пользу этого утверждения (которое автор этой книги высказал еще в 1966 г.) говорят и другие факты. В туманностях, где наблюдаются космические мазеры, видны молодые горячие звезды (см. ниже). Следовательно, там недавно закончился и, скорее всего, продолжается и в настоящее время, процесс звездообразования. Пожалуй, самое любопытное это то, что, как показывают радиоастрономические наблюдения, космические мазеры этого типа как бы «погружены» в небольшие, очень плотные облака ионизованного водорода. В этих облаках имеется много космической пыли, что делает их ненаблюдаемыми в оптическом диапазоне. Такие «коконы» ионизуются молодой, горячей звездой, находящейся внутри них. При исследовании процессов звездообразования весьма полезной оказалась инфракрасная астрономия. Ведь для инфракрасных лучей межзвездное поглощение света не так существенно.
Мы можем теперь представить следующую картину: из облака межзвездной среды, путем его конденсации, образуется несколько сгустков разной массы, эволюционирующих в протозвезды. Скорость эволюции различна: для более массивных сгустков она будет больше (см. дальше табл. 2). Поэтому раньше всего превратится в горячую звезду наиболее массивной сгусток, между тем как остальные будут более или менее долго задерживаться на стадии протозвезды. Их-то мы и наблюдаем как источники мазерного излучения в непосредственной близости от «новорожденной» горячей звезды, ионизующей не сконденсировавший в сгустки водород «кокона». Разумеется, эта грубая схема будет в дальнейшем уточняться, причем, конечно, в нее будут внесены существенные изменения. Но факт остается фактом: неожиданно оказалось, что некоторое время (скорее всего — сравнительно короткое) новорожденные протозвезды, образно выражаясь, «кричат» о своем появлении на свет, пользуясь новейшими методами квантовой радиофизики (т. е. мазерами)...
Спустя 2 года после открытия космических мазеров на гидроксиле (линия 18 см) было установлено, что те же источники одновременно излучают (также мазерным механизмом) линию водяных паров, длина волны которой 1,35 см. Интенсивность «водяного» мазера даже больше, чем «гидроксильного». Облака, излучающие линию H2O, хотя и находятся в том же малом объеме, что и «гидроксильные» облака, движутся с другими скоростями и значительно более компактны. Нельзя исключать, что в близком будущем будут обнаружены и другие мазерные линии. (Недавно были обнаружены мазерные линии молекулы SiH). Таким образом, совершенно неожиданно радиоастрономия превратила классическую проблему звездообразования в ветвь наблюдательной астрономии. (Более подробно о звездообразовании см. книгу автора: «Звезды: их рождение, жизнь и смерть» (М.: Наука, 1984)).
Оказавшись на главной последовательности и перестав сжиматься, звезда длительно излучает практически не меняя своего положения на диаграмме «спектр—светимость». Ее излучение поддерживается термоядерными реакциями, идущими в центральных областях. Таким образом, главная последовательность представляет собой как бы геометрическое место точек на диаграмме «спектр—светимость», где звезда (в зависимости от ее массы) может длительно и устойчиво излучать благодаря термоядерным реакциям. Место звезды на главной последовательности определяется ее массой. Следует заметить, что имеется еще один параметр, определяющий положение равновесной излучающей звезды на диаграмме «спектр—светимость». Таким параметром является первоначальный химический состав звезды. Если относительное содержание тяжелых элементов уменьшится, звезда «ляжет» на диаграмме ниже. Именно этим обстоятельством объясняется наличие последовательности субкарликов. Как уже говорилось выше, относительное содержание тяжелых элементов у этих звезд в десятки раз меньше, чем у звезд главной последовательности.
Время пребывания звезды на главной последовательности определяется ее первоначальной массой. Если масса велика, излучение звезды имеет огромную мощность и она довольно быстро расходует запасы своего водородного «горючего». Так, например, звезды главной последовательности с массой, превышающей солнечную в несколько десятков раз (это горячие голубые гиганты спектрального класса O), могут устойчиво излучать, находясь на этой последовательности всего лишь несколько миллионов лет, в то время как звезды с массой, близкой к солнечной, находятся на главной последовательности 10 — 15 млрд. лет. Ниже приводится табл. 2, дающая вычисленную продолжительность гравитационного сжатия и пребывания на главной последовательности для звезд разных спектральных классов. В этой же таблице приведены значения масс, радиусов и светимостей звезд в солнечных единицах.
Таблица 2
Спектральный класс | Масса | Радиус | Светимость | Время, лет | |
гравитационного сжатия | пребывания на главной последовательности | ||||
B0 | 17,0 | 9,0 | 1,2 • 105 | 8 • 106 | |
B5 | 6,3 | 4,2 | 1,1 • 106 | 8 • 107 | |
A0 | 3,2 | 2,8 | 4,1 • 106 | 4 • 108 | |
A5 | 1,9 | 1,5 | 2,2 • 107 | 2 • 109 | |
F0 | 1,5 | 1,25 | 4,8 | 4,2 • 107 | 4 • 109 |
F5 | 1,3 | 1,24 | 2,7 | 5,6 • 107 | 6 • 109 |
G0 | 1,02 | 1,02 | 1,2 | 9,4 • 107 | 11 • 109 |
G2 (Солнце) | 1,00 | 1,00 | 1,0 | 1,1 • 108 | 13 • 109 |
G5 | 0,91 | 0,92 | 0,72 | 1,1 • 108 | 17 • 109 |
K0 | 0,74 | 0,74 | 0,32 | 2,3 • 108 | 28 • 109 |
K5 | 0,54 | 0,54 | 0,10 | 6,0 • 108 | 70 • 109 |
Из таблицы следует, что время пребывания па главной последовательности звезд, более «поздних», чем K0, значительно больше возраста Галактики, который по существующим оценкам близок к 15 — 20 млрд. лет.
«Выгорание» водорода (т. е. превращение его в гелий при термоядерных реакциях) происходит только в центральных областях звезды. Это объясняется тем, что звездное вещество перемешивается лишь в центральных областях звезды, где идут ядерные реакции, в то время как наружные слои сохраняют относительное содержание водорода неизменным. Так как количество водорода в центральных областях звезды ограниченно, рано или поздно (в зависимости от массы звезды) он там практически весь «выгорит». Расчеты показывают, что масса и радиус центральной ее области, в которой идут ядерные реакции, постепенно уменьшаются, при этом звезда медленно перемещается, на диаграмме «спектр—светимость» вправо. Этот процесс происходит значительно быстрее у сравнительно массивных звезд. Если представить себе группу одновременно образовавшихся эволюционирующих звезд, то с течением времени главная последовательность на диаграмме «спектр—светимость», построенная для этой группы, будет как бы загибаться вправо.
Что же произойдет со звездой, когда весь (или почти весь) водород в ее ядре «выгорит»? Так как выделение энергии в центральных областях звезды прекращается, температура и давление не могут поддерживаться там на уровне, необходимом для противодействия силе тяготения, сжимающей звезду. Ядро звезды начнет сжиматься, а температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия (в который превратился водород) с небольшой примесью более тяжелых элементов. Газ в таком состоянии носит название «вырожденного». Он обладает рядом интересных свойств, на которых мы здесь останавливаться не можем. В этой плотной горячей области ядерные реакции происходить не будут, но они будут довольно интенсивно протекать на периферии ядра, в сравнительно тонком слое. Вычисления показывают, что светимость звезды и ее размеры начнут расти. Звезда как бы «разбухает», и начнет «сходить» с главной последовательности, переходя в области красных гигантов. Далее, оказывается, что звезды-гиганты с меньшим содержанием тяжелых элементов будут иметь при одинаковых размерах более высокую светимость.
На рис. 14 приведены теоретически рассчитанные эволюционные треки на диаграмме «светимость—температура поверхности» для звезд разной массы. При переходе звезды в стадию красного гиганта скорость ее эволюции значительно увеличивается.
Для проверки теории большое значение имеет построение диаграммы «спектр—светимость» для отдельных звездных скоплений. Дело в том, что звезды одного и того же скопления (например. Плеяды) имеют, очевидно, одинаковый возраст. Сравнивая диаграммы «спектр—светимость» для разных скоплений — «старых» и «молодых», можно выяснить, как эволюционируют звезды. На рис. 15 и 16 приведены диаграммы «показатель цвета—светимость» для двух различных звездных скоплении. Скопление NGC 2254 — сравнительно молодое образование.
На соответствующей диаграмме отчетливо видна вся главная последовательность, в том числе ее верхняя левая часть, где расположены горячие массивные звезды (показателю цвета — 0,2 соответствует температура 20 тыс. К, т. е. спектр класса B).
Шаровое скопление M3 — «старый» объект. Ясно видно, что в верхней части главной последовательности диаграммы, построенной для этого скопления, звезд почти нет. Зато ветвь красных гигантов у M3 представлена весьма богато, в то время как у NGC 2254 красных гигантов очень мало. Это и понятно: у старого скопления M3 большое число звезд уже успело «сойти» с главной последовательности, в то время как у молодого скопления NGC 2254 это произошло только с небольшим числом сравнительно массивных, быстро эволюционирующих звезд. Обращает на себя внимание, что ветвь гигантов для M3 идет довольно круто вверх, а у NGC 2254 она почти горизонтальна. С точки зрения теории это можно объяснить значительно более низким содержанием тяжелых элементов у M3. И действительно, у звезд шаровых скоплений (так же как и у других звезд, концентрирующихся не столько к галактической плоскости, сколько к галактическому центру) относительное содержание тяжелых элементов незначительно.
На диаграмме «показатель цвета—светимость» для M3 видна еще одна почти горизонтальная ветвь. Аналогичной ветви на диаграмме, построенной для NGC 2254, нет. Теория объясняет появление этой ветви следующим образом. После того как температура сжимающегося плотного гелиевого ядра звезды — красного гиганта — достигнет 100—150 млн. К, там начнет идти новая ядерная реакция. Эта реакция состоит в образовании ядра углерода из трех ядер гелия. Как только начнется эта реакция, сжатие ядра прекратится. В дальнейшем поверхностные слои звезды увеличивают свою температуру и звезда на диаграмме «спектр—светимость» будет перемещаться влево. Именно из таких звезд образуется третья горизонтальная ветвь диаграммы для M3.
На рис. 17 схематически приведена сводная диаграмма «цвет—светимость» для 11 скоплений, из которых два (M3 и M92) шаровые. Ясно видно, как «загибаются» вправо и вверх главные последовательности у разных скоплений в полном согласии с теоретическими представлениями, о которых уже шла речь. Из рис. 17 можно сразу определить, какие скопления являются молодыми и какие старыми. Например, «двойное» скопление χ и ħ Персея молодое. Оно «сохранило» значительную часть главной последовательности. Скопление M41 старше, еще старше скопление Гиады и совсем старым является скопление M67, диаграмма «цвет—светимость» для которого очень похожа на аналогичную диаграмму для шаровых скоплений M3 и M92. Только ветвь гигантов у шаровых скоплений находится выше в согласии с различиями в химическом составе, о которых говорилось раньше.
Таким образом, данные наблюдений полностью подтверждают и обосновывают выводы теории. Казалось бы, трудно ожидать наблюдательной проверки теории процессов в звездных недрах, которые закрыты от нас огромной толщей звездного вещества. И все же теория и здесь постоянно контролируется практикой астрономических наблюдений. Нужно отметить, что составление большого количества диаграмм «цвет—светимость» потребовало огромного труда астрономов-наблюдателей и коренного усовершенствования методов наблюдений. С другой стороны, успехи теории внутреннего строения и эволюции звезд были бы невозможны без современной, вычислительной техники, основанной на применении быстродействующих электронных счетных машин. Неоценимую услугу теории оказали также исследования в области ядерной физики, позволившие получить количественные характеристики тех ядерных реакций, которые протекают в звездных недрах. Без преувеличения можно сказать, что разработка теории строения и эволюции звезд является одним из крупнейших достижений астрономии второй половины XX столетия.
Развитие современной физики открывает возможность прямой наблюдательной проверки теории внутреннего строения звезд, и в частности Солнца. Речь идет о возможности обнаружения мощного потока нейтрино, который должно испускать Солнце, если в его недрах имеют место ядерные реакции. Хорошо известно, что нейтрино чрезвычайно слабо взаимодействует с другими элементарными частицами. Так, например, нейтрино может почти без поглощения пролететь через всю толщу Солнца, в то время как рентгеновское излучение может пройти без поглощения только через несколько миллиметров вещества солнечных недр. Если представить себе, что через Солнце проходит мощный пучок нейтрино с энергией каждой частицы в 10 млн. эВ, то из нескольких десятков миллионов нейтрино поглотится только одно. Отсюда ясно, что обнаружить поток солнечных нейтрино чрезвычайно трудно. Вместе с тем это представляется весьма заманчивым, так как обнаруженные каким-либо способом солнечные нейтрино приходят к нам непосредственно из его глубин. Следовательно, изучая эти нейтрино, можно получить достаточно подробную информацию о физических условиях в центральных областях Солнца.
Каков же ожидаемый поток нейтрино от Солнца? Если, например, в его недрах идет углеродно-азотная реакция, то, как оказывается при превращении четырех ядер водорода в одно ядро гелия образуются два нейтрино. При «протон-протонной» реакции выход нейтрино будет другой. Энергетический спектр солнечных нейтрино сильно зависит от температуры центральных областей Солнца. Ожидаемая величина потока энергии от Солнца в форме нейтрино составляет несколько процентов от всего потока солнечного излучения. Это очень много.
Как же обнаружить поток солнечных нейтрино? Идею такого эксперимента впервые предложил много лет тому назад академик Б. М. Понтекорво. Солнечное нейтрино, взаимодействуя с ядром изотопа хлора 37Cl, захватывается последним. При этом изотоп хлора превращается в радиоактивный изотоп аргона 37Ar и испускается электрон. По причине исключительно слабого взаимодействия нейтрино с веществом такие процессы будут происходить чрезвычайно редко. Поэтому установка для обнаружения солнечных нейтрино выглядит весьма необычно. Представьте себе большое количество специальных цистерн, наполненных прозрачной жидкостью перхлорэтиленом (C2Cl4). Количества этой жидкости достаточно, чтобы, например, заполнить большой бассейн для плавания. В таком гигантском количестве перхлорэтилена можно ожидать образования около десятка изотопов аргона ежедневно из-за захвата солнечных нейтрино ядрами 37Cl, входящими в состав жидкости. Оказывается, что средства современной экспериментальной физики позволяют обнаружить это ничтожно малое количество вновь образовавшихся изотопов аргона.