Признак параллельности прямых
Теорема.
Если внутренние накрест лежащие углы равны, то прямые параллельны
Доказательство.
Пусть прямые a и b образуют с секущей AB равные внутренние накрест лежащие углы.
Допустим, прямые a и b не параллельны, а значит, пересекаются в некоторой точке С.
Отложим от секущей AB треугольник ABC1, равный треугольнику ABC, так, что вершина С1 лежит в другой полуплоскости, чем вершина С.
По условию внутренние накрест лежащие углы при параллельных прямых a, b и секущей AB равны.
Из равенства треугольников следует, что ∠ CAB = ∠ C1BA и ∠ CBA = ∠ C1AB и они совпадают с внутренними накрест лежащими углами. Значит, прямая AC1 совпадает с прямой a, a прямая BC1 совпадает c прямой b. Отсюда следует, что через две различные точки С и С1 проходят две различны прямые a и b. Это противоречит аксиоме о том, что «Через любые две точки можно провести прямую, и только одну». Значит, прямые параллельны.
Из теоремы следует:
Две прямые, перпендикулярные третьей, параллельны.
На основании теоремы доказывается:
Если соответственные углы равны, то прямые параллельны.
Если сумма внутренних односторонних углов равна 180°, то прямые параллельны.
Второй признак равенства треугольников
Теорема
Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
Доказательство.
Пусть у треугольников ABC и A1B1C1 ∠ A = ∠ A1, ∠ B = ∠ B1, AB = A1B1.
Пусть A1B2C2 – треугольник, равный треугольнику ABC. Вершина B2 расположена на луче A1B1, а вершина С2 в той же полуплоскости относительно прямой A1B1, где лежит вершина С1. Так как A1B2 = A1B1, то вершина B2 совпадает с вершиной B1. Так как ∠ B1A1C2 = ∠ B1A1C1 и ∠ A1B1C2 = ∠ A1B1C1, то луч A1C2 совпадает с лучом A1C1, а луч B1C2 совпадает с лучом B1C1. Отсюда следует, что вершина С2 совпадает с вершиной С1. Треугольник A1B1C1 совпадает с треугольником A1B2C2, а значит, равен треугольнику ABC. Теорема доказана.
|