Числовые характеристики распределения Пуассона

Математическое ожидание равно дисперсии и равно параметру распределения а: М(Х)= а, D(X)= а.

 

 

КОММЕНТАРИИ К ЗАДАЧЕ № 4

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ НЕПРЕРЫВНОГО ТИПА.

 

Если возможные значения случайной величины сплошь заполняют некоторый промежуток <a,b> Ì R(быть может, и всюось), то табличный способ задания случайной величины непригоден. Такая случайная величина называется случайной величиной непрерывного типа. Ее функция распределения F(x) будет непрерывна. Напомним, что F(- ¥ ) = 0 , F(+ ¥ ) = 1 , F(x) - монотонная неубывающая функция. Производная такой функции F(x) будет функцией неотрицательной. Она называется плотностью распределения вероятностей или дифференциальной функцией распределения вероятностей. Ее обозначение .

Часто по условию задачи задают именно плотность распределения, зная которую можно вычислить и (интегральную) функцию распределения ( по формуле Ньютона - Лейбница ):

F(x) = F(x) - F(- ¥ ) =

Заметим, что f(x) - не обязательно непрерывная функция, она допускает в отдельных точках разрывы 1-го рода.

Итак, f(x) - неотрицательная кусочно-непрерывная функция, причем, согласно одному из свойств F(x),

F(+ ¥ ) = = 1

Последнее равенство, называемое условием нормировки f(x), показывает, что f(x) - не любая неотрицательная функция: площадь между графиком плотности распределения и осью абсцисс должна быть равна 1.(Для дискретной случайной величины условием нормировки являлось равенство ).

Для непрерывных случайных величин справедливы равенства F(b) - F(a) = P(a £ X < b) = P(a < X < b) = P(a < X £ b) = = P(a £ X £ b) = .

М(Х) и D(X) определяются формулами

M(X) = , D(X) = .

Вычислительная формула для D(X):

D(X) = M(X2) - (M(X))2 = - (M(X))2.

 

 

НОРМАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ И ЕГО

ХАРАКТЕРИСТИКИ

 

Нормальный (гауссовский) закон распределения задается плотностью распределения по формуле

 

, - ¥ < x < +¥

 

Числа а Î R и s > 0 называются параметрами нормального закона. Нормальный закон с такими параметрами обозначается N(a,s).

При а = 0 функция f(x) четная ( f(-x) = f(x) ) , ее график симметричен относительно оси OY, и поэтому среднее значение М(Х) = 0. График f(x) для закона N(a,s) получается из графика f(x) для N(0,s) сдвигом на а единиц вправо ( это известно из курса средней школы ), поэтому в общем случае М(Х) = а для нормального закона.

Дисперсия же вычисляется по формуле D(X) =s2.

 

Пример. Случайная величина Х распределена по нормальному закону с плотностью вероятности

Найти А, М (Х), D(X), P(-3<X<3).

Т. к. , то

Показатель экспоненты приравняем к , откуда а = 2 , s = 1 . Числовой коэффициент должен быть равен А, следовательно,

, M (X) = a = 2, D(X) = s 2 = 1.

P (-3 < X < 3) = F(3) - F(-3) = =

Этот интеграл не вычисляется в элементарных функциях, его численное значение можно найти по таблицам.

В большинстве учебников имеются таблицы для вычисления функций

Ф(х) = или Ф1(х) = = + Ф(х)

 

Ф(х) - нечетная функция, т.е. Ф(-х) = - Ф(х). В общем случае

Р(x1 < X < x2) = ,

где а и s - параметры нормального закона. Следовательно, для данного примера

P(|X| < 3) = Ф1(1) - Ф1(-5) = Ф(1) - Ф(-5) = Ф(1) + Ф(5) =

= 0,3413 + 0,5 = 0,8413.

 

 



>15
  • 16
  • Далее ⇒