Применение электромагнитных полей и излучений
При этом внутри зданий, расположенных в этих зонах, плотность потока энергии, как правило, превышает допустимые значения.
Значительную опасность представляют магнитные поля, возникающие в зонах, прилегающих к электрифицированным железным дорогам. Магнитные поля высокой интенсивности обнаруживаются даже в зданиях, расположенных в непосредственной близости от этих зон.
В быту источниками ЭМП и излучений являются телевизоры, дисплеи, печи СВЧ и другие устройства. Электростатические поля в условиях пониженной влажности (менее 70%) создают паласы, накидки, занавески и т.д. Микроволновые печи в промышленном исполнении не представляют опасности, однако неисправность их защитных экранов может существенно повысить утечки электромагнитного излучения. Экраны телевизоров и дисплеев как источники электромагнитного излучения в быту не опасны даже при длительном воздействии на человека, если расстояния от экрана превышают 30 см.
Электростатическое поле (ЭСП) полностью характеризуется напряженностью электрического поля Е (В/м). Постоянное магнитное поле (ПМП) характеризуется напряженностью магнитного поля Н (А/м), при этом в воздухе 1 А/м ~ 1,25 мкТл, где Тл - тесла (единица напряженности магнитного поля).
Электромагнитное поле (ЭМП) характеризуется непрерывным распределением в пространстве, способностью распространяться со скоростью света, воздействовать на заряженные частицы и токи. ЭМП является совокупностью двух взаимосвязанных переменных полей - электрического и магнитного, которые характеризуются соответствующими векторами напряженности Е (В/м) и Н (А/м).
В зависимости от взаимного расположения источника электромагнитного излучения и места пребывания человека необходимо различать ближнюю зону (зону индукции), промежуточную зону и дальнюю зону (волновую зону) или зону излучения. При излучении от источников (рис. 2.11) ближняя зона простирается на расстояние λ/2π, т. е. приблизительно на 1/6 длины волны. Дальняя зона начинается с расстояний, равных λ ∙ 2π, т.е. с расстояний, равных приблизительно шести длинам волны. Между этими двумя зонами располагается промежуточная зона.
В зоне индукции, в которой еще не сформировалась бегущая электромагнитная волна, электрическое и магнитное поля следует считать независимыми друг от друга, поэтому эту зону можно характеризовать электрической и магнитной составляющими электромагнитного поля. Соотношение между ними в этой зоне может быть самым различным. Для промежуточной зоны характерно наличие, как поля индукции, так и распространяющейся электромагнитной волны. Для волновой зоны (зоны излучения) характерно наличие сформированного ЭМП, распространяющегося в виде бегущей электромагнитной волны.
Рис. 2.11.Зоны, возникающие вокруг элементарного источника ЭМИ
В этой зоне электрическая и магнитная составляющие изменяются синфазно и между их средними значениями за период существует постоянное соотношение
,
где ρв - волновое сопротивление, Ом; , ε - электрическая постоянная; μ - магнитная проницаемость среды. Колебания векторов Е и Н происходят во взаимно перпендикулярных плоскостях. В волновой зоне воздействие ЭМП определяется плотностью потока энергии, переносимой электромагнитной волной. При распространении электромагнитной волны в проводящей среде векторы Е и Н связаны соотношением
,
где ω - круговая частота электромагнитных колебаний, Гц; ν - удельная электропроводность вещества экрана; z - глубина проникновения электромагнитного поля.
При распространении ЭМП в вакууме или в воздухе, где ρв = 377 Ом, Е = 377 Н. Электромагнитное поле несет энергию, определяемую плотностью потока энергии (1 = ЕН (Вт/м2)), которая показывает, какое количество энергии протекает за 1 с сквозь площадку в 1 м2, расположенную перпендикулярно движению волны.
При излучении сферических волн плотность потока энергии в волновой зоне может быть выражена через мощность Рист, подводимую к излучателю:
,
где R - расстояние до источника излучения, м.
Воздействие электромагнитных полей на человека зависит от напряженностей электрического и магнитного полей, потока энергии, частоты колебаний, наличия сопутствующих факторов, режима облучения, размера облучаемой поверхности тела и индивидуальных особенностей организма. Установлено также, что относительная биологическая активность импульсных излучений выше непрерывных. Опасность воздействия усугубляется тем, что оно не обнаруживается органами чувств человека.
Воздействие электростатического поля (ЭСП) на человека связано с протеканием через него слабого тока (несколько микроампер). При этом электротравм никогда не наблюдается. Однако вследствие рефлекторной реакции на электрический ток (резкое отстранение от заряженного тела) возможна механическая травма при ударе о рядом расположенные элементы конструкций, падение с высоты и т.д. Исследование биологических эффектов показало, что наиболее чувствительны к электростатическому полю ЦНС, сердечнососудистая система, анализаторы. Люди, работающие в зоне воздействия ЭСП, жалуются на раздражительность, головную боль, нарушения сна и др.
Воздействие магнитных полей (МП) может быть постоянным (от искусственных магнитных материалов) и импульсным. Степень воздействия МП на работающих зависит от его максимальной напряженности в пространстве магнитного устройства или в зоне влияния искусственного магнита. Доза, полученная человеком, зависит от расположения по отношению к МП и режима труда. При действии переменного магнитного поля наблюдаются характерные зрительные ощущения, которые исчезают в момент прекращения воздействия. При постоянной работе в условиях хронического воздействия МП, превышающих предельно допустимые уровни, наблюдаются нарушения функций ЦНС, сердечнососудистой и дыхательной систем, пищеварительного тракта, изменения в крови. Длительное действие приводит к расстройствам, которые субъективно выражаются жалобами на головную боль в височной и затылочной области, вялость, расстройство сна, снижение памяти, повышенную раздражительность, апатию, боли в области сердца.
При постоянном воздействии ЭМП промышленной частоты наблюдаются нарушения ритма и замедление частоты сердечных сокращений. У работающих в зоне ЭМП промышленной частоты могут наблюдаться функциональные нарушения ЦНС и сердечнососудистой системы, а также изменения в составе крови.
При воздействии ЭМП радиочастотного диапазона атомы и молекулы, из которых состоит тело человека, поляризуются. Полярные молекулы (например, воды) ориентируются по направлению распространения электромагнитного поля; в электролитах, которыми являются жидкие составляющие тканей, крови и т.п., после воздействия внешнего поля появляются ионные токи. Переменное электрическое поле вызывает нагрев тканей человека как за счет переменной поляризации диэлектрика (сухожилия, хрящи и т.д.), так и за счет появления токов проводимости. Тепловой эффект является следствием поглощения энергии электромагнитного поля. Чем больше напряженность поля и время воздействия, тем сильнее проявляются указанные эффекты. Избыточная теплота отводится до известного предела путем увеличения нагрузки на механизм терморегуляции. Однако, начиная с величины I = 10 мВт/см2, называемой тепловым порогом, организм не справляется с отводом образующейся теплоты, и температура тела повышается, что приносит вред здоровью.
Наиболее интенсивно электромагнитные поля воздействуют на органы с большим содержанием воды. При одинаковых значениях напряженности поля коэффициент поглощения в тканях с высоким содержанием воды примерно в 60 раз выше, чем в тканях с ее низким содержанием. С увеличением длины волны глубина проникновения электромагнитных волн возрастает; различие диэлектрических свойств тканей приводит к неравномерности их нагрева, возникновению макро- и микротепловых эффектов со значительным перепадом температур.
Перегрев особенно вреден для тканей со слаборазвитой сосудистой системой или с недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузырь). Облучение глаз может привести к помутнению хрусталика (катаракте), которое обнаруживается не сразу, а через несколько дней или недель после облучения. Развитие катаракты является одним из немногих специфических поражений, вызываемых электромагнитными излучениями радиочастот в диапазоне 300 МГц - 300 ГГц при плотности потока энергии свыше 10 мВт/см2. Помимо катаракты при воздействии ЭМП возможны ожоги роговицы.
Для длительного действия ЭМП различных диапазонов длин волн при умеренной интенсивности (выше ПДУ) характерным считают развитие функциональных расстройств в ЦНС с нерезко выраженными сдвигами эндокринно-обменных процессов и состава крови. В связи с этим могут появиться головные боли, повышение или понижение давления, снижение частоты пульса, изменение проводимости в сердечной мышце, нервно-психические расстройства, быстрое развитие утомления. Возможны трофические нарушения: выпадение волос, ломкость ногтей, снижение массы тела. Наблюдаются изменения возбудимости обонятельного, зрительного и вестибулярного анализаторов. На ранней стадии изменения носят обратимый характер, при продолжающемся воздействии ЭМП происходит стойкое снижение работоспособности. В пределах радиоволнового диапазона доказана наибольшая биологическая активность микроволнового (СВЧ) поля. Острые нарушения при воздействии ЭМИ (аварийные ситуации) сопровождаются сердечнососудистыми расстройствами с обмороками, резким учащением пульса и снижением артериального давления.
Лазерное излучение. В промышленности, медицине, в научных исследованиях, системах мониторинга состояния окружающей среды нашли применение лазеры. Их излучение может оказывать опасное воздействие на организм человека и в первую очередь на орган зрения. Лазерное излучение (ЛИ) генерируется в инфракрасной, световой и ультрафиолетовой областях неионизирующего ЭМИ.
Лазеры, генерирующие непрерывное излучение, позволяют создавать интенсивность порядка 1010 Вт/см2, что достаточно для плавления и испарения любого материала. При генерации коротких импульсов интенсивность излучения достигает величин порядка 1015 Вт/см2 и больше. Для сравнения отметим, что значение интенсивности солнечного света вблизи земной поверхности составляет всего 0,1-0,2 Вт/см2.
В настоящее время в промышленности используется ограниченное число типов лазеров. Это в основном лазеры, генерирующие излучение в видимом диапазоне спектра (λ = = 0,44-0,59; λ = 0,63; λ = 0,69 мкм), ближнем ИК-диапазоне спектра (λ = 1,06 мкм) и дальнем ИК-диапазоне спектра (к = 10,6 мкм).
Области применения лазеров в зависимости от требуемой плотности потока излучения показаны на рис. 2.12.
При оценке неблагоприятного влияния лазеров все опасности разделяют на первичные и вторичные. К первичным относят факторы, источником образования которых является непосредственно сама лазерная установка. Вторичные факторы возникают в результате взаимодействия лазерного излучения с мишенью.
К первичным факторам вредности относятся: лазерное излучение, повышенное электрическое напряжение, световое излучение импульсных ламп накачки или газового разряда, электромагнитное излучение, акустические шумы и вибрация от работы вспомогательного оборудования, загрязнение воздуха газами, выделяющимися из узлов установки, рентгеновское излучение электроионизационных лазеров или электровакуумных приборов, работающих при напряжении свыше 15 кВ.
Рис. 2.12. Области применения лазеров в зависимости от требуемой плотности потока излучения
Вторичные факторы включают отраженное лазерное излучение, аэродисперсные системы и акустические шумы, образующиеся при взаимодействии лазерного излучения с мишенью, излучение плазменного факела.
Лазерное излучение может представлять опасность для человека, вызывая в его организме патологические изменения, функциональные расстройства органа зрения, центральной нервной и вегетативной систем, а также влиять на внутренние органы, такие как печень, спинной мозг и др. Наибольшую опасность лазерное излучение представляет для органа зрения. Основным патофизиологическим эффектом облучения тканей лазерным излучением является поверхностный ожог, степень которого связана с пространственно-энергетическими и временными характеристиками излучения.
При создании условий для безопасной эксплуатации лазеров прежде всего необходимо расчетом определить лазерно-опасную зону (ЛОЗ) - пространство, в пределах которого уровни лазерного излучения могут превышать предельно допустимые значения, а также основные принципы защиты от излучения и общие требования к организации рабочих мест, методам контроля и дозиметрической аппаратуре ЛОЗ.
Схема расчета облученности роговицы представлена на рис. 2.13.
При прямом облучении для наблюдателя, находящегося непосредственно в конусе узконаправленного лазерного луча (рис. 2.13, а), облученность роговицы глаза вычисляется по формуле
,
где Фе - энергетический поток (мощность) лазерного излучения; - коэффициент ослабления излучения на пути от лазера до роговицы глаза; d0 - диаметр выходного зрачка лазера; γ - угол расходимости луча, рад; R - расстояние от лазера до глаза.
При воздействии на роговицу глаза излучения лазера, отраженного от поверхности (рис. 2.13, б), расположенной на расстоянии R1 от выходного отверстия лазера, расчет ведут с учетом отражения. Облученность роговицы глаза наблюдателя Ер, находящегося на расстоянии R от поверхности q, значительно превышающем линейные размеры источника, равна произведению энергетической яркости источника на величину телесного угла, под которым он виден из точки наблюдения, а именно
,
где - коэффициент ослабления излучения на пути от поверхности q до наблюдателя
Рис. 2.13. Схема расчета облученности глаза:
а - для прямого пучка; б - для отраженного излучения; 1- лазер; 2 - глаз
Поверхность как источник излучения удобно характеризовать энергетической яркостью Lе и площадью пятна излучения Sq. При диффузном отражении энергетическая яркость источника связана с энергетическим потоком лазерного излучения соотношением
,
где ρ - коэффициент отражения.
Из анализа приведенных выше соотношений следует, что облученность глаза лазерным источником прямо пропорциональна мощности лазера и обратно пропорциональна квадрату расстояния до облучаемой поверхности.
Облученность кожных покровов численно равна облученности роговицы глаза. При вычислении уровней облученности органа зрения и кожных покровов в производственных условиях, где расстояния не превышают десятков метров, значения коэффициентов 1 и
cp можно принять равными единице. Приведенные формулы позволяют связать лучевые нагрузки на различные биологические ткани с энергетической характеристикой источника излучения.
Воздействия лазерного излучения на глаза. Сравнительно легкая повреждаемость роговицы и хрусталика глаза при воздействии электромагнитных излучений самых различных длин волн, а также способность оптической системы глаза увеличивать плотность энергии излучения видимого и ближнего инфракрасного диапазона на глазном дне на несколько порядков по отношению к роговице делает его наиболее уязвимым органом. Степень повреждения глаза главным образом зависит от таких физических параметров, как время облучения, плотность потока энергии, длина волны и вид излучения (импульсное или непрерывное), а также индивидуальных особенностей глаза.
Воздействие ультрафиолетового излучения на орган зрения в основном приводит к поражению роговицы. Поверхностные ожоги роговицы лазерным излучением с длиной волны в пределах ультрафиолетовой области спектра устраняются в процессе самозаживления.
Для лазерного излучения с длиной волны 0,4-1,4 мкм критическим элементом органа зрения является сетчатка. Она обладает высокой чувствительностью к электромагнитным волнам видимой области спектра и характеризуется большим коэффициентом поглощения электромагнитных волн видимой, инфракрасной и ближней ультрафиолетовой областей.
Повреждение глаза может варьировать от слабых ожогов сетчатки, сопровождающихся незначительными или полностью отсутствующими изменениями зрительной функции, до серьезных травм, приводящих к ухудшению зрения и даже к полной его потере. Излучения с длинами волн более 1,4 мкм практически полностью поглощаются в стекловидном теле и водянистой влаге передней камеры глаза. При умеренных повреждениях эти среды глаза способны самовосстанавливаться. Лазерное же излучение средней инфракрасной области спектра может причинить тяжелое тепловое повреждение роговице.
В заключение отметим, что лазерное излучение оказывает повреждающее действие на все структуры органа зрения. Основной механизм повреждений - тепловое действие. Импульсное лазерное излучение представляет большую опасность, чем непрерывное.
Воздействие лазерного излучения на кожу. Повреждения кожи, вызванные лазерным излучением, могут быть различными: от легкого покраснения до поверхностного обугливания и образования глубоких дефектов кожи. Эффект воздействия на кожные покровы определяется параметрами излучения лазера и степенью пигментации кожи.
Пороговые уровни энергии излучения, при которых возникают видимые изменения в коже, колеблются в сравнительно широких пределах (от 15 до 50 Дж/см2). Биологические эффекты, возникающие при облучении кожи в зависимости от длины волны, приведены в табл. 2.11.
Действие лазерного излучения на внутренние органы. Лазерное излучение (особенно дальней инфракрасной области спектра) способно проникать через ткани тела и взаимодействовать с биологическими структурами на значительной глубине, поражая внутренние органы.
Наибольшую опасность для внутренних органов представляет сфокусированное лазерное излучение. Степень повреждения внутренних органов в значительной мере определяется интенсивностью потока излучения и цветом окраски органа. Так, печень является одним из наиболее уязвимых внутренних органов. Тяжесть повреждения внутренних органов также зависит от длины волны падающего излучения. Наибольшую опасность представляют излучения с длинами волн, близкими к спектру поглощения химических связей органических молекул, входящих в состав биологических тканей.
Таблица 2.11