Расширенное свойство предела произведения
Предел произведения нескольких функций равен произведению пределов этих функций:
5) Предел частного
Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю:
Первый замечательный предел
Доказательство
Рассмотрим односторонние пределы и и докажем, что они равны 1.
Пусть . Отложим этот угол на единичной окружности (R = 1).
Точка K — точка пересечения луча с окружностью, а точка L — с касательной к единичной окружности в точке (1;0). Точка H — проекция точки K на ось OX.
Очевидно, что:
(1)
(где SsectOKA — площадь сектора OKA)
(из : | LA | = tgx)
Подставляя в (1), получим:
Так как при :
Умножаем на sinx:
Перейдём к пределу:
Найдём левый односторонний предел:
Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.
Второй замечательный предел
или
Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что
Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где — это целая часть x.
Отсюда следует: , поэтому
.
Если , то . Поэтому, согласно пределу , имеем:
.
По признаку (о пределе промежуточной функции) существования пределов .
Раскрытие неопределенностей
Для раскрытия неопределённостей типа используется следующий алгоритм:
1. Выявление старшей степени переменной;
2. Деление на эту переменную как числителя, так и знаменателя.
Для раскрытия неопределённостей типа существует следующий алгоритм:
1. Разложение на множители числителя и знаменателя;
2. Сокращение дроби.
Правило Лопиталя
. Пусть функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, быть может, самой точки a, и пусть или . Тогда, если существует предел отношения производных этих функций , то существует и предел отношения самих функций f(x)/g(x) при x→а, причем
(1) |
Непрерывность функции
В точке
Функция , называется непрерывной в точке , если выполняется одно из эквивалентных условий:
1) ; (1)
2) для произвольной последовательности (xn) значений , сходящейся при n → ∞ к точке x0, соответствующая последовательность (f(xn)) значений функции сходится при n → ∞ к f(x0);
3) или f(x) - f(x0) → 0 при x - x0 → 0;
4) такое, что
На интервале
Функция f(x) называется непрерывной на интервале (отрезке), если она непрерывна в любой точке интервала (отрезка).
При этом не требуется непрерывность функции на концах отрезка или интервала, необходима только односторонняя непрерывность на концах отрезка или интервала.
Промежутке
Если функция непрерывна в каждой точке некоторого промежутка, то она называется непрерывной на этом промежутке.