Термопластичные пластмассы

 

Полистирол, полиамид, ПВХ.

Преимущества:

1) удобные технологии изготовления;

2) усадка мала ≤ 3%;

3) относительно низкая хрупкость.

 

Недостатки:

1)

низкая теплостойкость;

 

2)

прочность уменьшается от времени (старение = деградация).

 

Пример:

Фторопласт-4

Tэкс. = 250-269°С, σ ~ 10-30 МПа, плотность d ~ 2 г/см3, fтр = 0,04;

Стоит в растворах воды, щелочей, кислот.

Применение: вакуумная техника.

Недостатки:

● σU ≤ 100 МПа;

● Е ~ 2000-3000 МПа;

● низкая теплостойкость;

● деградация.

 

2. Сетчатое строение

 

В результате химической реакции устанавливается связь между молекулами, один раз затвердевает и при нагреве без разложения распадается.

 

Термореактивные пластмассы

 

Полиэфир, полиуретан, эпопсиды, фенолформальдегид.

Наполнители:

- сыпучие (тальк);

- волокна;

- слои (ткань).

 

 

Недостатки:

● усадка 12-15%;

● хрупкость.

Достоинства:

● имеют высокую теплостойкость;

● форму можно получить без давления.

Вариант наполнителя:

Эпоксидная смола + волокна (бор, углерод, стекло)80%

волокна σUB), МПа d, г/см3 У.П., км У.Ж., км
бор
углерод 1,5
стекло 2,2

 

Итог:

Если пластмассы сравнивать с Ме, то у них более дешевый материал, очень легкий, коррозионной стойкости нет, хорошие теплоизоляторы.

 

Глава 7. Конструкционные материалы с высокими удельной плотностью и удельной жесткостью

 

Титан и его сплавы

 

В земной коре: Al, Fe, Mg, Ti.

 

1. Физико-химические свойства

 

tпл. = 1670°С, при 882°С: ГПУ-решетка - Tiα и ОЦК-решетка - Tiβ , Е ~ 112000 МПа, плотность d ~ 4,6 г/см3;

● не магнитный;

● электрическая проводимость низкая σTi ~ 0,04 σCu;

● теплопроводность крайне низкая λTi ~ 0,05 λCu;

● очень склонен к газопоглощениям: Н2 при t ≥ 50°С, О2 при t ≥ 400°С, все газы при t ≥ 500°С;

● имеет высочайшую коррозионную стойкость во всех средах, в том числе и биологических, не ржавеет в царской водке (TiO2);

● восстанавливается мгновенно, т.к. имеет высокое сродство к О2.

 

В природе TiO2 имеет сильнейшие межатомные связи.

TiO2 ―› термический способ ―› Ti – губка (полуфабрикат).

Из губки получают:

- порошок + спекание + прессование;

- многократный переплав.

 

Выводы:

1) цена 1кг – 15-20$;

2) примеси (получен грязный Ti), при условии получения самого чистого иодидного Ti число примесей 0,1-0,2%, в технических сплавах ВТ1-00 – 0,4-0,5%, ВТ1-0 – 0,5-0,7%;

3) склонен к схватыванию.

2. Механические свойства

  σUB), МПа KCU, мДж/м2 δ, % НВ
иодидный 220-260 2,5 50-60 1070-1080
ВТ1-00 300-450 1,2-2 1100-1400
ВТ1-0 400-550 1-1,5 1300-1600

 

 

● при одинаковой пластичности Ti в 2 раза прочнее и тверже железа;

● свойства Ti очень сильно зависят от количества примесей.

 

ВТ1-0/tисп, °С σUB), МПа KCU, мДж/м2 δ, %
-196 (жидкий N2) 0,8
-253 (жидкий О2) 0,6

Нет явной хладноломкости, т.к. решетка ГПУ.

 

3. Технологические свойства

 

● пластичность хорошая, деформируется до тонкого листа;

● резание – крайне плохое;

● свариваемость (защита от газов);

● литейные качества (защита от газов).

4. Применение

● геттер (поглотитель газа) – губка;

● химическая промышленность;

● протезы;

● декоративные цели.

 

5. Сплавы Ti

 

1) легированный α-стабилизатор

Линия перемещения растворимости не применяется, т.к. Ti3Al очень хрупкий.

При введении Al температура β―›α превращения повышается, значит, при любой скорости охлаждения превращение пойдет диффузионно, неравномерную структуру получить нельзя.

Ti + Al (до 6%) ―› α-сплавы Ti (твердый раствор, ГПУ)

● всегда прочнее Ti;

● всегда легче Ti;

● сильнее чувствительнее к Н2.

ВТ5: Ti+Al(5%), σU = 750-950 МПа, δ = 10-14%, упрочняющей ТО нет, упрочнять можно только наклепом.

 

3) легированный β-стабилизатор

 

При введении таких элементов температура β―›α превращения понижается, значит, при использовании быстрого охлаждения можно в сплавах получить неравновесные структуры: вместо 2-х фаз получим одну, либо α’ мартенсит, либо β’ – нестабильную.

Нагрев до β-области:

Для таких сплавов существует упрочняющая ТО – закалка + старение.

 

4) Ti + β-стабилизаторы + Al – (α+β)-сплавы Ti

псевдо-α-сплавы:

ВТ4 (Ti + 4%Al + 1-2%Mn), %лег.эл. ≤ 5.

Без ТО:

σUB), МПа δ, %
700-900 10-12

 

мартенситные:

%лег.эл. ~ 5-10%

ВТ6 (Ti + 6%Al + 5%V)

ВТ16 (Ti + 3%Al + 5%V + 5%Mo)

 

Упрочняющая ТО:

  σUB), МПа δ, %
ВТ6 1100-1250
ВТ16 1300-1400 6-7

 

переходный класс:

%лег.эл. ~ 10-15%

ВТ22 (Ti + 5%Al + 5%V + 5%Mo + 1-2%Cr)

σUB), МПа δ, % d, г/см3 У.П., км
4-5 4,8

 

псевдо-β-сплавы:

%лег.эл. ~ 15-20%

ВТ15 (Ti + 5%Al + 8%Mo + 11%Cr)

σUB), МПа δ, % У.П., км

 

Итог:

1) цена;

2) более пластичны, т.к. β-фаза имеет 48 плоскостей скольжения, хуже сваривается, менее хладостойки, менее чувствительны к воздуху.

Применение:

У.П. + коррозионная стойкость – авиация, ракетостроение, подводные лодки, химическая промышленность, инвалидные коляски, спортивный инвентарь.

 

Недостатки:

1) теплопроводность низкая (для закаливания сплавов могут быть применимы небольшие сечения);

2) Eнизк, для несущих длинных деталей Ti сплавы не применимы, искусственно повышают жесткость.

 

 

Берилий и его сплавы

 

 

1. Физико-химические свойства

 

tпл. = 1284°С, ГПУ-решетка, Е ~ 310000 МПа, плотность d ~ 1,85 г/см3, У.Ж. ~ 16000 км;

Применим, где требуется стабильность размеров под нагрузкой (гироскопы).

 

 

● теплопроводность λBe ~ 0,5 λCu;

● скорость распространения звука в аккустических системах 12600 м/с ;

● имеет очень высокую радиационную стойкость.

 

2. Механические свойства

 

Губка ―› многократное переплавление (очистка) ―› размалывание на порошок ―› спекание ―› горячее прессование ―› выдавливание.

 

  σUB), МПа δ, %
литой 1-2
спекание 370-450 2-4
выдавливание 650-800 8-13

 

 

3. Технологические свойства

● обрабатываемость давлением;

● резание (как Ti);

● сварка (с защитой от газов);

● литейные качества (отливки не получаются).

 

4. Сплавы Ве

RBe ~ 1.13 Å

Be + 30%Al

δ. = 5%, Е ~ 205000 МПа, плотность d ~ 2 г/см3, σU ~ 400-500 МПа, У.П. ~ 25 км, У.Ж. ~ 10000 км.

 

Композиционные материалы

 

Материалы, в которых с помощью соответствующих технологий соединены разные составляющие. При этом каждый компонент сохраняет свой состав, структуру и свойства.

К.М.:

1) ДКМ (дисперсноупрочняемые КМ), наполнители – мелкие частицы, расположены по-разному;

2) ВКМ (волокнистые);

3) СКМ (слоистые).

 

1.ДКМ – матрица ориентированная дисперсными частицами.

Матрица – не несет нагрузку, частицы – тормозят движение дислокаций.

, f – объемная доля.

λmin = 0.015 мкм – предел, ближе которого частицы не приближаются – потеря пластичности.

Реально:

d ~ 0.01-0.1 мкм

λ ~ 0.1-1 мкм

f ~ 2-15%

Вывод: свойства ДКМ зависит от размера и количества частиц, но не зависит от свойств самих частиц.

ДКМ: способ сохранения прочности при нагреве до температуры 0,95tпл, т.е. они являются жаростойкими (t ≤ 700-750°С) или жаропрочными (t > 750°C) материалами.

При условии, что частицы Ме будут рассматриваться в матрице:

1) Al+Al2O3, tэкспл ≤ 500°С, σU ~ 400 МПа, δ. = 4%, САП ~ 3-15%;

2) Ni+ThO2(HfO2), жаропрочные до 1200°С(950°С).

Идея ДКМ применима для создания материала высокой теплостойкости и жаропрочности.

 

2.ВКМ – волокна, несут нагрузку. Матрица – связывает и перераспределяют нагрузку между волокнами.

- нагрузка, передаваемая на волокна.

- max нагрузка при нагреве.

Max нагрузку можно передать только на «длинные» волокна, если волокно l < lкр требует больших касательных напряжений, их не выдержит сцепление.

● свойства ВКМ зависят от размеров волокон, от прочности их сцепления, от количества волокон, от свойств самих волокон.

 

волокна σUB), МПа Е, МПа d, г/см3
борное ~3000 2,6
углеродное ~2500 1,7
SiC ~3000 3,2
стекло ~4500 2,5
усы SiC ~3600 3,2

 

Пример: Al (легкая пластичная масса) + волокна В и С (40-50% по объему).

 

волокна σUB), МПа d, г/см3 У.П., км У.Ж., км
В ~1200 2,6
С ~1000 2,2

 

● при правильно подобранной матрице ВКМ обеспечивают достижение необычайно высоких удельных характеристик: У.П. и У.Ж.;

 

● ВКМ – самые надежные конструкционные материалы: у них не может быть внезапного хрупкого разрушения, они не чувствительны к концентраторам напряжений, не подвержены усталости.