Техническая диагностика и оценка показателей надежности эксплуатируемых мостов и труб

Технической диагностикой называют науку о распознавании и определении технического состояния сооружения. Под техническим состоянием понимается состояние сооружения, которое характеризуется в определенный момент времени, при определенных условиях внешней среды значениями параметров, установленными технической документацией. К видам технического состояния относят исправное, работоспособное, неисправное, неработоспособное в зависимости от значений параметров в данный момент времени [34].

Согласно ГОСТ 20911-89 [34] методология технической диагностики эксплуатируемых искусственных сооружений включает два основных направления:

· оценку технического состояния в целях обеспечения режима дальнейшей эксплуатации;

· прогнозирование технического состояния в целях определения вероятностей сохранения работоспособного состояния на заданный интервал времени.

Техническое диагностирование искусственных сооружений, эксплуатируемых на железных дорогах, включает такой важный оценочный показатель, как работоспособность. В соответствии состандартами работоспособное техническое состояние – состояние сооружения, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и конструкторской документации.

Работоспособность мостов и труб, эксплуатируемых на железных дорогах, оценивают:

· по четырем категориям технического состояния, каждая из которых характеризует степень повреждения конструкций и устанавливает требуемый вид ремонта для обеспечения режима дальнейшей эксплуатации (см. подразд. 1.4);

· по пяти категориям грузоподъемности, каждая из которых характеризует класс несущей способности конструкций с позиций обеспечения безопасного пропуска по ним классифицируемых временных подвижных нагрузок (см. подразд. 1.5).

Целью технической диагностики эксплуатируемых искусственных сооружений является повышение их надежности. Под эксплуатационной надежностью понимают свойство сооружения сохранять во времени в установленных пределах значения контролируемых параметров, характеризующих способность обеспечивать безопасный режим эксплуатации в заданных условиях.

Эксплуатационная надежность является комплексным свойством, для мостов и труб ее оценивают по трем основным показателям:

– вероятности безотказной работы (безотказность);

– долговечности (остаточный срок службы, технический ресурс);

– ремонтопригодности (фактическая наработка на ремонт, межремонтный срок).

Оценку технического состояния искусственных сооружений на железных дорогах осуществляют в процессе контроля качества эксплуатации (табл. 1.1). При этом на основе анализа информации о наличии и степени развития повреждений дается оценка приоритетности ремонтных работ. Она производится одномоментно, по мере поступления достоверной информации (с использованием информационно-аналитической системы АСУ ИССО). Но при рассмотрении тенденций принятия стратегии эксплуатации мостовых сооружений одним из определяющих является вопрос изменения технического состояния во времени. Виды ремонтов и объемы ремонтно-восстановительных работ для каждой стратегии определяют не только с учетом степени повреждения сооружений, но и прогноза изменения фактического состояния в реальных условиях эксплуатации.

Таким образом, техническая диагностика и оценка показателей эксплуатационной надежности искусственных сооружений базируются на изучении и анализе фактического поведения конструкций в реальных условиях эксплуатации с учетом воздействия комплекса природно-климатических факторов окружающей среды, внешних силовых нагрузок, внутренних удерживающих от разрушения сил, свойств строительных материалов.

Для оценки показателей эксплуатационной надежности дорожных искусственных сооружений нашли практическое применение различные методики, разработанные Московским государственным университетом путей сообщения (МИИТ) [17–20], Сибирским государственным университетом путей сообщения (СГУПС) [4, 5], Дальневосточным государственным университетом путей сообщения (ДВГУПС) [21–23] и др.

Методики МИИТ позволяют определять и прогнозировать остаточный ресурс железобетонных и металлических пролетных строений эксплуатируемых мостов [17–20]. Наибольший интерес представляют следующие методики.

1. Методика расчета остаточного срока службы железобетонных пролетных строений по выносливости бетона эксплуатируемых мостов. Она базируется на наличии следующей предварительной информации:

· фактического напряженно-деформированного состояния конструкций;

· скорости развития повреждений (раскрытие трещин, коррозия арматуры);

· скорости протекания процессов нагружения и изменения при этом свойств строительных материалов (годовое число циклов воздействий поездной нагрузки, снижение прочности бетона и арматуры) [18].

Рассматриваемая методика включает в себя модель постепенного накапливания повреждений и разрушения бетона конструкций при действии повторяющихся нагрузок. В краткой форме ее можно описать следующим образом [17, 18].

Концентрация напряжений на концах трещин при многократно повторяющихся воздействиях нагрузки способствует разрыхлению бетона и снижению прочности материала.

Образование микротрещин в бетоне при первом его загружении создает опасность разрушения материала от воздействия многократно повторяющейся нагрузки. Часть площади бетона под нагрузкой постепенно выключается из работы и перестает оказывать сопротивление внешней силе. Скорость разрушения прогрессирует по мере усиления числа циклов повторений. Разрушение наступает в тот момент, когда на оставшейся части сечения статическая прочность окажется равной повторяющейся нагрузке.

В результате разрыхления структуры и перераспределения напряжений в бетоне образуется цепной механизм постепенного накапливания повреждений, приводящий к исчерпанию выносливости и разрушению бетона.

Срок службы пролетных строений по признаку исчерпания выносливости бетона определяют [17, 18] как

 

, (1.5)

где = 2×106; – число циклов нагружения в единицу времени; – характеристика безопасности (обеспечение работоспособности в течение расчетного срока службы с вероятностью Р(t) = 0,99, которой соответствует = –2,33; – коэффициент, учитывающий уровень нагружения и статистические свойства нагрузок, определяемый по формуле [10, 11]

,

, (1.6)

где – математическое ожидание напряжений от полной нагрузки; – коэффициент, учитывающий изменение прочности бетона во времени, который принимают в зависимости от класса бетона по [18]; – призменная прочность бетона, определяемая как [18]

 

, (1.7)

– кубиковая прочность бетона, МПа, [18]

, (1.8)

В – класс бетона на сжатие; – коэффициент вариации временной нагрузки; – коэффициент, зависящий от значения напряжений постоянной нагрузки и (определяют по [18]); = 20 – характеристика кривой выносливости.

Методика предусматривает, что расчетный срок службы Т по (1.5) должен быть не меньше нормативного Тн = 80¸100 лет.

Если срок службы Т, определенный на основе вероятностных характеристик прочности материалов и параметров нагрузок, выше допустимого Тн, то конструкция пролетного строения удовлетворяет требованиям безопасной работы по признаку выносливости бетона в эксплуатации и имеет резерв надежности.

2. Методика вероятностной оценки сроков службы эксплуатируемых железобетонных пролетных строений по выносливости бетона сжатой зоны [19] включает в себя следующие основные положения.

Срок службы железобетонных пролетных строений зависит от многочисленных факторов – воздействий внешней среды и нагрузок, с одной стороны, и прогнозируемого и контролируемого расчетом характера накопления повреждений в самой конструкции, ее износа – с другой. Учесть все эти факторы функциональными зависимостями практически невозможно, поэтому оценку сроков службы предлагается производить в интервале доверительных границ.

Формализация условия безопасной эксплуатации железобетонных пролетных строений имеет следующий вид [19]

 

, (1.9)

где – значение меры ресурса прочности бетона на момент технической диагностики; – допустимое значение меры этого ресурса (назначают по оптимальному уровню надежности U, рис. 1.68).

Прочностную характеристику железобетонных пролетных строений на любой момент времени после циклов загружений получают опытным путем – одним из неразрушающих способов оценки прочности бетона, а также по эмпирической зависимости по результатам лабораторных исследований.

Вероятностно-статистический подход позволяет прогнозировать поведение конструкции во времени, используя статистическую информацию меры повреждений, ограниченную в пределах доверительного интервала: при доверительном интервале вероятности 0,05–0,95 принимают значения меры повреждения = 0,45¸0,15 при среднем значении = 0,3 и коэффициенте вариации = 0,13 [19].

 

 

Рис. 1.68 График снижения ресурса эксплуатируемого сооружения: То – период приработки; Тр – допустимый (нормируемый) срок службы; Тпр – предельный срок службы;
Б – точка, обозначающая, что дальнейшая эксплуатация опасна; Б* – точка, обозначающая уровень экономической целесообразности ресурса прочности после усиления; В – уровень снижений несущей способности или грузоподъемности при развитии дефектов; В* – момент выполнения капитального ремонта

Методика планирования продолжительности межремонтных сроков железобетонных пролетных строений по критерию допускаемого уровня накопления повреждений базируется на установлении его с учетом значения и категории дороги в зависимости от требуемого уровня надежности по признаку выносливости сжатого бетона, работающего под поездной нагрузкой в условиях неблагополучного воздействия среды. Согласно исследованиям МИИТ оптимальную (по экономическому и прочностному критерию) надежность против образования трещин в сжатой зоне бетона без опасности потери несущей способности рекомендуют принимать 0,95 [19].

Полный ресурс сжатой зоны бетона пролетного строения по признаку выносливости определяют как [19]

 

, (1.10)

где – мера повреждения пролетного строения; – эквивалентное количество циклов нагружений, определяемое по формуле [19]

 

, (1.11)

где – напряжения в сжатой зоне бетона от i-го подвижного состава;
– количество циклов от i-го подвижного состава; – значение заранее выбранного уровня напряжений; допускается принимать по таблицам МИИТ в зависимости от структуры подвижного состава и длины пролета (например, для груженых 8-осных вагонов при = 16,5 м
= 11) [19]; – прогнозируемое количество поездов в единицу времени с момента технической диагностики или начала эксплуатации; – мера накопления повреждений при прохождении одного поезда i-го типа.

Остаточный ресурс пролетного строения при нормировании предельного значения ресурса прочности бетона = и полученной в момент технической диагностики меры повреждения определяют как [19]

. (1.12)

При анализе значений полного и остаточного сроков службы железобетонного пролетного строения учитывают следующее: если эти сроки незначительны, то проведением ремонтных мероприятий, исключающих неравномерное загружение балок и деградацию бетона, достигают снижение скорости накопления повреждений и, следовательно, увеличивают полный и остаточный ресурсы.

Методика СГУПС. В настоящее время находит практическое применение методика оценки технического состояния искусственных сооруженийс учетом относительных и абсолютных характеристик показателей надежности.

В соответствии с этой методикой относительные показатели надежности искусственных сооружений определяют по безопасности, грузоподъемности, ремонтопригодности, долговечности [4].

Оценка технического состояния искусственных сооруженийс учетом относительных характеристик показателей надежности включает в себя следующее:

· по безопасности оценивают с учетом развития в них дефектов и повреждений с позиций влияния на безопасность движения поездов и эксплуатацию (табл. 1.4) [4];

· по грузоподъемности– в соответствиисбазовыми оценками состояния и содержания Кгсост, Кгсод в зависимости от категории грузоподъемности моста (табл. 1.5) [4];

· по ремонтопригодности в соответствии с базовыми оценками состояния и содержания Kрсост(сод)на основании категории дефектов и средней стоимости ремонтно-восстановительных работ, которые нужно выполнить для их устранения (табл. 1.6) [4];

· по долговечности в соответствии сбазовыми оценками состояния и содержания Kдсост(сод)с учетом для основных несущих конструкций относительного остаточного срока службы (табл. 1.7) [4].

 

Таблица 1.4