Современные биотехнологии охраны окружающей среды

Биотехнологии, как направления науки и практики, являют­ся пограничной областью между биологией и техникой отраслей человеческой деятельности. Они представляют собой совокуп­ность методов и приемов получения полезных для человека про­дуктов, явлений и эффектов с помощью организмов. Примени­тельно к охране окружающей человека природной среды биотех­нологию можно рассматривать как разработку и создание техно­логических процессов, основанных на продуктах жизнедеятель­ности биологических объектов, микробных культур, сообществ, их метаболитов и препаратов, путем включения их в естествен­ные круговороты веществ, элементов, энергии и информации. Методами и приемами биотехнологии являются фундаменталь­ные и прикладные наработки микробиологии, биохимии, биофи­зики, клеточной и генной инженерии, их сочетание.

История биотехнологии насчитывает тысячелетия (произ­водство хлебопечения, виноделие сыроделие и т. д.). Однако ежегодно появляются новые прикладные направления биотех­нологии, общим подходом для которых являются искусственное создание условий для эволюционных, биогеохимических процес­сов на Земле в виде характерных биореакторов, реализующихся с большими скоростями, оставаясь совместимыми по своим про­дуктам с окружающей природной средой.

Принципиальная связь биогеотехнологии с геомикробиологией и биотехнологией может быть представлена схемой на рис. 27

На протяжении столетий человечество добывало металлы из богатых и относительно простых по химическому составу руд. По мере истощения запасов таких руд стали использовать полиметаллические и более бедные руды. При этом традиционные способы добычи металлов сопровождались загрязнением окру­жающей природной среды в виде отходов, шлаков (полезно используется не более 2% сырья). При этом извлекался только один элемент, а сопутствующие — накапливались в отвалах.

Более совершенным и менее антропогенным является гидрометаллургический метод, основанный на использовании водных растворов, одним из разновидностей которого является бактериально-химическое выщелачивание металлов. Основу этого процесса составляет окисление содержащихся в рудах сульфидных минералов тионовыми бактериями. К таким минералам относятся сульфиды железа, меди, никеля, цинка, кобальта, свинца, молибдена, серебра, мышьяка. При этом металлы переходят из нерастворимой сульфидной формы в растворимую сульфатную. Полученные концентрированные (до 50 г/л) железосодержащие растворы отправляются на экстракцию и электрохимическую обработку (аналогичные операции обработки других металлов).

 

 

Биотехнология выщелачивания металлов может применяться как для непосредственной обработки в пласте, так и в за брошенных карьерах и отвалах, что в целом улучшает охра окружающей природной среды (более 5% металлов в мире добывается в настоящее время таким способом и в перспективе его применение несомненно возрастет).

Тионовые бактерии находят также применение для предварительного понижения содержания серы в рудном сырье. Содержание серы в углях может достигать 10-12%, а сжигание приводит к образованию сернистого ангидрида и в дальнейшее к выпадению кислотных дождей. Принципиально биотехнология снижения серы в углях аналогична выщелачиванию металлов. Попутно при этом будут выделяться содержащиеся в углях германий, вольфрам, никель, бериллий, ванадий, золото, медь, кадмий, свинец, цинк.

 

При добыче каменного угля зачастую выделяется метан, являющийся причиной взрывов и смертельных случаев на шах­тах (статистика свидетельствует, что добыча 1 млн. т угля сопровождается смертью 1 шахтера). Наряду с имеющимися способами борьбы с метаном в шахтах применяется и биотехнологический, в основу которого положен процесс поглощения метана метаноокисляющими бактериями в угольных пластах и выработанных пространствах.

Для метаноокисляющих бактерий метан служит одновремен­но источником углерода и энергии (1/3 расходуется на увеличе­ние биомассы, а 2/3 — на образование внеклеточных органиче­ских соединений и углекислого газа). Метаноокисляющие бак­терии выращиваются в ферментерах, концентрируются и не­посредственно в шахте приготавливается рабочая суспензия с добавками азота и фосфора, которая закачивается в пласт из расчета 30-40 л на 1 т угля. Необходимый для развития бак­терий кислород подается в пласт компрессорами. Содержание метана в этом случае снижается более чем в 2 раза и в 1,5 раза повышается отдача угольного пласта.

Заметное место среди средств повышения вторичной добы­чи нефти принадлежит также биотехнологии. При нефтедобыче извлекается не более 50% ее запасов в пласте, что обусловлено прочной связью нефти с породой. Повышение нефтедобычи пла­ста на 10-16% равносильно открытию нового месторождения. После закачивания воды для активизации биохимической ак­тивности микробов применяется аэрация в зоне нагнетательной скважины. Это вызывает микробное разрушение нефти с обра­зованием углекислого газа, водорода, низкомолекулярных орга­нических кислот, которые поступают в анеробную зону пласта и разрушаются анаэробными метангенерирующими бактериями с образованием метана. Разрушение нефти и образование газов приводит к разжижению ее, увеличению текучести и повыше­нию газового давления в пласте, что сопровождается увеличе­нием нефтедобычи (в отдельных случаях до 30%) и снижению антропогенного воздействия на окружающую природную среду.