Работа в поле тяготения. Потенциал поля тяготения

Рассмотрим, чему равна работа, соверша­емая силами поля тяготения при переме­щении в нем материальной точки мас­сой т. Вычислим, например, какую надо затратить работу для удаления тела мас­сой т от Земли. На расстоя­нии R (рис. 39) на данное тело действует сила

F=GmM/R2.

При перемещении этого тела на расстоя­ние dR затрачивается работа

 

Знак минус появляется потому, что сила и перемещение в данном случае противо­положны по направлению (рис.39).

Если тело перемещать с расстояния R1 до R2, то затрачивается работа

 

Из формулы (25.2) вытекает, что за­траченная работа в поле тяготения не зависит от траектории перемещения, а оп­ределяется лишь начальным и конечным положениями тела, т. е. силы тяготения действительно консервативны, а поле тя­готения является потенциальным (см. § 12).

Согласно формуле (12.2), работа, со­вершаемая консервативными силами, рав­на изменению потенциальной энергии системы, взятому со знаком минус, т. е.

А = -DП = -(П21)= П12.

Из формулы (25.2) получаем

П12= - m(GM/R1 - GM/R2).

(25.3)

Так как в формулы входит только раз­ность потенциальных энергий в двух со­стояниях, то для удобства принимают по­тенциальную энергию при R2®¥ равной нулю ( lim П2=0 при R2®¥). Тогда (25.3) запишется в виде П1= - GmM/R1. Так как пер­вая точка была выбрана произвольно, то

П=-GmM/R.

Космические скорости

Для запуска ракет в космическое про­странство надо в зависимости от постав­ленных целей сообщать им определенные начальные скорости, называемые космиче­скими.

Первой космической(или круговой) скоростьюv1называют такую минималь­ную скорость, которую надо сообщить те­лу, чтобы оно могло двигаться вокруг Зем­ли по круговой орбите, т. е. превратиться в искусственный спутник Земли. На спут­ник, движущийся по круговой орбите ра­диусом r, действует сила тяготения Зем­ли, сообщающая ему нормальное ускоре­ние v21/r. По второму закону Ньютона,

GmM/r2=mv21/r.

Если спутник движется недалеко от поверхности Земли, тогда r»R0 (радиус Земли) и g=GM/R20(cм. (25.6)), поэтому у поверхности Земли

Первой космической скорости недоста­точно для того, чтобы тело могло выйти из сферы земного притяжения. Необходимая для этого скорость называется второй кос­мической. Второй космической(или пара­болической) скоростьюv2 называют ту наименьшую скорость, которую надо со­общить телу, чтобы оно могло преодолеть притяжение Земли и превратиться в спут­ник Солнца, т. е. чтобы его орбита в поле тяготения Земли стала параболической. Для того чтобы тело (при отсутствии со­противления среды) могло преодолеть земное притяжение и уйти в космическое пространство, необходимо, чтобы его кине­тическая энергия была равна работе, совершаемой против сил тяготения:

Третьей космической скоростьюv3на­зывают скорость, которую необходимо со­общить телу на Земле, чтобы оно покинуло пределы Солнечной системы, преодолев притяжение Солнца. Третья космическая скорость v3=16,7 км/с. Сообщение телам таких больших начальных скоростей явля­ется сложной технической задачей. Ее первое теоретическое осуществление на­чато К. Э. Циолковским, им была выведе­на уже рассмотренная нами формула