Контур с током в магнитном поле. Магнитный момент контура с током. Механический момент, действующий на контур с током в однородном магнитном поле
На практике для измерения индукции магнитного поля использу-ется контур (замкнутый проводник) с током. Магнитное поле оказы-вает на него ориентирующее действие. Рамке с током приписывают магнитный момент. Под магнитным моментом контура с током пони-мают векторную физическую величину, численно равную произведе-нию силы тока, текущего в контуре, на его площадь.
| p = ISn | , | (2.2.1) | ||
| где n | m | |||
| − единичный вектор положительной нормали к поверхности рамки. |
Направление магнитного момента совпадает с направлением по-ложительной нормали, направление которой определяется правилом правого винта.
F2

| F1 | |||
| B | B | ||
| pm | F | pm | |
| F4 | |||
| а | б | ||
| Рис. 2.2.1 | |||
| Рассмотрим прямоугольный контур 1–2–3–4 с током I, помещенный | |||
| в магнитное поле индукцией B (рис. 2.2.1). Силы F2 и F4 | (рис. 2.2.1, а), | ||
| приложенные к проводникам 2–3 и 4–1, численно равны: | |||
| F2= F4= IBс sin(90 –α) = IBс cosα. | (2.2.2) |

Эти силы направлены вдоль вертикальной оси рамки в противо-положные стороны и уравновешивают друг друга. На рис. 2.2.1, б, по-
казан вид контура сверху. Силы F1 и F3 , действующие на прямоли-нейные проводники 1–2 и 3–4, по закону Ампера численно равны:
| F1= F3= IBd. | (2.2.3) |
Эти силы образуют пару сил, вращающий момент которых равен произведению модуля одной силы на плечо пары l.
Результирующий вращающий момент М, действующий на контур, равен моменту пары сил F1 и F3 :
| М = F1l = F3l, | (2.2.4) |
| где l = c sin α – плечо пары сил. | |
| Подставляя (2.2.3) в (2.2.4), получим: | |
| М = IdcB sinα. | (2.2.5) |
Так как dc = S – площадь контура и IS = рm – магнитный момент контура с током, а α – угол между pm и B, то соотношение (2.2.5) можно переписать в виде:
| M = pm Bsinα. | (2.2.6) |
| В векторном виде соотношение (2.2.6) имеет вид: | |
| M = pm × B. | (2.2.7) |
Формула (2.2.7) справедлива для плоского контура произвольной конфигурации. Согласно ей магнитную индукцию можно определить как отношение максимального вращающего момента, действующего на рамку с током, к ее магнитному моменту:
| B = | Mmax | = | Mmax | . | (2.2.8) | |
| p | IS | |||||
| m |
Силы магнитного поля стремятся расположить контур так, чтобы его магнитный момент рm был параллелен вектору B (т. е. когда
М = ртВ sin 0° = 0).
Для того чтобы увеличить угол между векторами рт и В на dα, нужно совершить работу против сил поля
| δ A = Md α = pm B sin α d α. | (2.2.9) |
Поворачиваясь на угол dα при возвращении в исходное положе-ние, контур с током может совершить такую же работу. Следователь-но, работа равна уменьшению потенциальной энергии П, которой об-ладает контур с током в магнитном поле В:
| δА = − dП. | (2.2.10) |
Выбирая нулевой уровень энергии П при α = π/2, проинтегрируем это выражение по α в пределах от α до π/2. В результате получим:
| π 2 | π 2 | π 2 | |
| П = − ∫ δ A = − ∫ Mdα = − ∫ | pm B sinα dα= −pm B cosα | ||
| α | α | α | (2.2.11) |
или П= − pm ⋅B.
Формулы (2.2.11) определяют энергию контура с током в поле с индукцией В.