ЛЕКЦИЯ 4. ЭВМ КАК СРЕДСТВО ОБРАБОТКИ ИНФОРМАЦИИ

Первая в мире ЭВМ – ENIAC – была создана в 1946 г. в США.

На пути развития электронной вычислительной техники (начиная с середины 40-х годов) можно выделить четыре поколения больших ЭВМ, отличающихся элементной базой, функционально-логической организацией, конструктивно-технологическим исполнением, программным обеспечением, техническими и эксплуатационными характеристиками, степенью доступа к ЭВМ со стороны пользователей. Смене поколений сопутствовало изменение основных технико-эксплуатационных и технико-экономических показателей ЭВМ, и в первую очередь таких, как быстродействие, емкость памяти, надежность и стоимость. При этом одной из основных тенденций развития было и остается стремление уменьшить трудоемкость подготовки программ решаемых задач, облегчить связь операторов с машинами, повысить эффективность использования последних. Это диктовалось и диктуется постоянным ростом сложности и трудоемкости задач, решение которых возлагается на ЭВМ в различных сферах применения.

Возможности улучшения технико-эксплуатационных показателей ЭВМ в значительной степени зависит от элементов, используемых для построения их электронных схем. Поэтому при рассмотрении этапов развития ЭВМ каждое поколение обычно в первую очередь характеризуется используемой элементной базой.

 

История развития ЭВМ

 

Основным элементом ЭВМ первого поколения являлась электронная лампа, остальные компоненты электронной аппаратуры – это обычные резисторы. Конденсаторы, трансформаторы. Для построения оперативной памяти ЭВМ уже с середины 50-х годов начали применяться специально разработанные для этой цели элементы – ферритовые сердечники с прямоугольной петлей гистерезиса. В качестве устройств ввода-вывода сначала использовалась стандартная телеграфная аппаратура (телетайпы, ленточные перфораторы, трансмиттеры, аппаратура счетно-перфорационных машин), а затем специально для ЭВМ были разработаны электромеханические устройства на магнитных лентах, барабанах, дисках и быстродействующие печатающие устройства.

Машины 1-го поколения имели внушительные размеры, потребляли большую мощность, имели сравнительно малое быстродействие, малую емкость оперативной памяти, невысокую надежность работы и недостаточно развитое программное обеспечение. В ЭВМ этого поколения были заложены основы логического построения машин и продемонстрированы возможности цифровой вычислительной техники.

На смену лампам в машинах второго поколения (в конце 50-х годов) пришли транзисторы. В отличие от ламповых ЭВМ транзисторные машины обладали бόльшими быстродействием, емкостью оперативной памяти и надежностью. Существенно уменьшились размеры, масса и потребляемая мощность. Значительным достижением явилось применение печатного монтажа. Повысилась надежность электромеханических устройств ввода-вывода, удельный вес которых увеличился. Машины второго поколения обладали бόльшими вычислительными и логическими возможностями.

Особенность машин 2-го поколения – их дифференциация по применению. Появились машины для решения научно-технических и экономических задач, для управления производственными процессами и различными объектами (управляющие машины).

Наряду с техническим совершенствованием ЭВМ развиваются методы и приемы программирования вычислений, высшей ступенью которых является автоматическое программирование, требующее минимальных затрат труда математиков-программистов. Большое развитие и применение получили алгоритмические языки, существенно упрощающие процесс подготовки задач к решению на ЭВМ. С появление алгоритмических языков резко сократились штаты "чистых" программистов, поскольку составление программ на этих языках стало под силу самим пользователям.

В период развития и совершенствования машин второго поколения наряду с однопрограммными появились многопрограммные (мультипрограммные) ЭВМ. В отличие от однопрограммных машин, в которых программы выполняются только поочередно, в многопрограммных ЭВМ возможна совместная реализация нескольких программ за счет организации параллельной работы нескольких устройств машины.

Третье поколение ЭВМ (конец 60-х – начало 70-х годов) характеризуется широким применением интегральных схем. Интегральная схема представляет собой законченный логический функциональный блок, соответствующий достаточно сложной транзисторной схеме. Благодаря использованию интегральных схем удалось существенно улучшить технические и эксплуатационные характеристики машин. Этому способствовало также применение многослойного печатного монтажа.

В машинах 3-го поколения значительно расширился набор различных электромеханических устройств для ввода и вывода информации. Развитие этих устройств носит эволюционный характер: их характеристики совершенствуются гораздо медленнее, чем характеристики электронного оборудования.

Программное обеспечение машин 3-го поколения получило дальнейшее развитие, особенно это касается операционных систем. Развитые операционные системы многопрограммных машин, снабженных периферийными устройствами ввода-вывода с автономными пультами абонентов, обеспечивают управление работой ЭВМ в различных режимах: пакетной обработки, разделения времени, вопрос-ответ и др.

В машинах 3-го поколения существенно расширены возможности по обеспечению непосредственного доступа к ним со стороны абонентов, находящихся на различных, в том числе и значительных (десятки и сотни километров) расстояниях. Удобство общения абонента с машиной достигается за счет развитой сети абонентских пунктов, связанных с ЭВМ информационными каналами связи, и соответствующего программного обеспечения.

Например, в режиме разделения времени многим абонентам предоставляется возможность одновременного, непосредственного и оперативного доступа к ЭВМ. Вследствие большого развития инерционности человека и машины у каждого из одновременно работающих абонентов складывается впечатление, будто ему одному предоставлено машинное время.

При разработке машин 3-го поколения применяются различные методы автоматизации проектирования. Основной объем документации, необходимой для монтажа, разрабатывается с помощью ЭВМ.

Для машин четвертого поколения (конец 70-х годов) характерно применение больших интегральных схем (БИС). Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности и быстродействия, снижению стоимости. Это, в свою очередь, оказывает существенное воздействие на логическую структуру ЭВМ и ее программное обеспечение. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы.

Отчетливо проявляется тенденция к унификации ЭВМ, созданию машин, представляющих собой единую систему. Ярким выражением этой тенденции является создание и развитие ЕС ЭВМ – Единой системы электронных вычислительных машин.

 

Таблица 4.1. Поколения ЭВМ
№ поколения, годы Элементная база Особенности архитектуры Особенности программирования Организация работы
1-е, 1950-1955 (Урал-2) Электронные лампы Схема Фон-Неймана Программирование в командах ЭВМ Программист за пультом управления
2-е, 1955-1960 (Минск, БЭСМ-4) Транзисторы Схема Фон-Неймана Программирование на алгоритмических языках (Алгол, Фортран) Пакетный режим (за пультом управления оператор)
3-е, 1960-1965 (IBM/360, БЭСМ-6) Большие интегральные схемы Параллельная работа внешних устройств Операционные системы Пакетный режим, удаленные терминалы
4-е, 1960-… (CRAY-1, Эльбрус, IBM PC) Сверхбольшие интегральные схемы Параллельная работа нескольких процессоров, сети ЭВМ Распараллеливание алгоритмов Пакетный режим, удаленные терминалы, сети ЭВМ
5-е, 1990-… (проект, Япония) Сверхбольшие интегральные схемы Дружественность по отношению к пользователю

 

Промышленный выпуск первых моделей ЕС ЭВМ был начат в 1972 г., при их создании были использованы все современные достижения в области электронной вычислительной техники, технологии и конструирования ЭВМ, в области построения систем программного обеспечения. Объединение знаний и производственных мощностей стран-разработчиков позволило в довольно сжатые сроки решить комплексную научно-техническую проблему. ЕС ЭВМ представляла собой непрерывно развивающуюся систему, в которой улучшались технико-эксплуатационные показатели машин, совершенствовалось периферийное оборудование и расширялась его номенклатура.

Со второй половины 50-х годов кроме больших ЭВМ начали развиваться мини-ЭВМ, отличающимися меньшими функциональными возможностями главным образом из-за ограниченного набора команд и меньшей разрядности чисел, представляющих обрабатываемые данные.

С появлением в 1971 г. в США микропроцессоров начал развиваться новый класс вычислительных машин – микро ЭВМ.