В соответствии с (1) записываем условие задачи в виде
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ.
1. Известен закон движения материальной точки:
, где
,
и
– положительные постоянные величины. Получить уравнение траектории. Найти зависимость от времени модуля скорости, модуля ускорения, нормального ускорения, тангенциального ускорения, радиуса кривизны траектории и угла между векторами скорости и ускорения.
Решение:
В соответствии с (1) записываем условие задачи в виде

Выражаем время
и подставляем в выражение
, написанное выше. Получается уравнение траектории

Это уравнение параболы, пересекающей ось
в точке
(см. рис. 8), которая сразу находится из условия
.
Проекции вектора скорости на оси
и
находятся в соответствии с (3):

Модуль скорости согласно (4)

Ускорение в соответствии с (7) имеет одну компоненту

Таким образом, ускорение оказывается постоянным по величине и направленным против оси
. Его величина (8)

Угол
между векторами скорости
и ускорения
можно найти из определения скалярного произведения
и известного соотношения
:

Тангенциальное ускорение (13)

Нормальное ускорение по теореме Пифагора (12)

Полученные соотношения могут быть проиллюстрированы рисунком 8, который сам по себе достаточен для нахождения тангенциального и нормального ускорений. Действительно,
, в то время как
, то есть


При движении «вверх», когда
, скорость
уменьшается и
; когда
, скорость увеличивается и
. Таким образом, при получении тангенциального ускорения
можно уклониться от выполнения дифференцирования модуля скорости. С помощью рис. 8 можно найти и угол
между скоростью и ускорением:
,

Наконец, по формуле (14) найдем радиус кривизны траектории:

2. Диск радиусом 10 см вращается с угловым ускорением, равным
рад/с2. Сколько оборотов сделает диск при изменении частоты вращения от 2.0 оборотов в секунду до 4.0 оборотов в секунду? Найти время
, в течение которого это произойдет. Определить нормальное и тангенциальное ускорения точек на окружности диска в момент времени
. Определить угол между векторами скорости и ускорения в тот момент времени, когда диск вращался с частотой 0.5 оборотов в секунду.
Решение:
Так как угловое ускорение постоянно, используем формулы равноускоренного вращения (21) – (22). Первое соотношение в (21) с учетом (24) сразу дает искомое время
:

использованы данные условия задачи
,
. Полученное время
можно просто подставить во второе соотношение (21) для нахождения угла поворота
, а с учетом (23) – и числа оборотов
:

Правильнее будет подставить полученное выше выражение
в приведенную зависимость
, исключив время
и выразив ответ через данные условия задачи. В результате этой процедуры получим формулу (22):

Тангенциальное ускорение согласно (19) оказывается постоянным

Для определения нормального ускорения по формуле (20) следует найти угловую скорость
в момент времени
с помощью (21):


Угол
между векторами скорости
и ускорения
можно найти, используя векторы
и
. Тангенциальное ускорение
направлено по касательной к окружности, т.е. так же, как и скорость
. Поэтому (см. рис. 9)

Подставляя сюда
, где
и
, получаем


3. К пружинным весам подвешен легкий блок. Через него переброшена невесомая нерастяжимая нить, к концам которой прикреплены два одинаковых груза массами по 5.0 кг. После того, как на один из грузов был поставлен перегрузок массой 1.0 кг, система пришла в движение. Определить: 1) ускорение тел; 2) силу давления перегрузка на груз; 3) натяжение нити; 4) показание пружинных весов. Трение отсутствует.
Решение:
Данная в условии задачи система состоит, по крайней мере, из трех тел (см. рис. 10), поэтому необходимо написать три уравнения движения (для каждого из этих тел):

Если объединить два тела
и
справа в одно
+
, потеряем запрашиваемую информацию о силе давления
перегрузка
на груз
. Согласно третьему закону Ньютона, сила реакции опоры
, действующая со стороны груза на перегрузок, по величине равна силе давления
:


Нерастяжимость нити означает равенство по величине смещений, следовательно, и ускорений левого и правого грузов:
. Правый груз и перегрузок движутся вместе:
. Поэтому ускорения всех трех тел будем считать одинаковыми по величине:

Так как масса нити равна нулю, то

Это следует из уравнения движения нити, массу которой можно считать равной нулю,

(см. рис. 10) и третьего закона Ньютона
. Так как масса блока равна нулю и отсутствует трение,

Таким образом, упрощающие предположения, зафиксированные в условии задачи, приводят к тому, что силу натяжения нити везде можно считать одинаковой по величине:

Далее спроектируем уравнения движения наших тел на произвольно выбранные вертикальные оси, например, левого – на ось, направленную вверх, правых – на ось, направленную вниз (можно и по-другому, результат будет тот же):

Теперь в системе трех уравнений три неизвестных:
,
и
. Решая эту систему, получим



Обратите внимание на то, что вес перегрузка, равный силе
по определению веса тела, меньше силы тяжести (0.91<1).
Осталось найти показания весов, к которым подвешен блок. Так как ось его неподвижна (к тому же он невесом), второй закон Ньютона для блока сводится к равенству нулю суммы всех действующих на него сил:

то есть
. Наконец, сила
, действующая на подвес, равная весу системы по определению веса,

Чтобы это доказать, надо, как и для нити, рассмотреть участок системы от блока до пружины и использовать неподвижность этого участка. Поэтому показание пружинных весов, равное весу системы,

Обратите внимание на то, что вес системы отнюдь не равняется массе системы, умноженной на ускорение свободного падения:

4. Найти период вращения маятника, совершающего круговые движения в горизонтальной плоскости (рис. 11). Длина нити равна 1м. Угол, образуемый нитью с вертикалью, равен 300.
Решение:
Напишем уравнение движения груза на конце нити:


где
– сила натяжения нити. Так как груз совершает равномерное движение по окружности, векторная сумма действующих на него сил
направлена в центр этой окружности и равна массе груза
, умноженной на его ускорение
, равное центростремительному (35):

Значит, проекция суммы сил на вертикальную ось равна нулю (проекция
на эту ось равна нулю):

Проекция уравнения движения на другую, горизонтальную ось,

с учетом известного выражения (34)
и только что найденной силы натяжения нити, дает величину угловой скорости кругового движения

Используем связь радиуса окружности
с данной в условии длиной нити
:
. В результате находим угловую скорость

и период вращения

Для малых углов
, когда
, период вращения такого маятника совпадает с периодом его свободных колебаний.
5.Лодка неподвижно стоит в озере. На корме и на носу лодки на расстоянии 5м друг от друга сидят рыболовы. Масса лодки 50кг, массы рыболовов 60кг и 90кг. Рыболовы меняются местами. На какое расстояние переместится лодка относительно дна озера? Сопротивлением воды пренебречь.
Решение:
Решение этой задачи дает закон сохранения импульса (44) – (44’). На систему тел «рыбаки – лодка» действуют внешние вертикальные силы тяжести и реакции опоры (воды), проекция которых на горизонтальное направление равна нулю. Поэтому (см. (44’’)) сохраняется горизонтальная проекция импульса системы, которая равна нулю, так как вначале лодка стояла в воде неподвижно. Это означает (см.(44’’)), что равна нулю и горизонтальная проекция скорости центра масс системы: как бы не передвигались рыбаки по лодке, центр масс системы не сдвинется относительно дна озера в горизонтальном направлении. Положение центра масс системы трех тел определяется формулой (42`)

или, в проекции на произвольную ось
,

где
,
– радиус-вектор и координата центра масс системы. В нашей задаче
,
,
,
,
,
– массы, радиус-векторы и координаты рыбаков,
– масса лодки,
и
– радиус-вектор и координата её центра масс.
Выберем ось
горизонтальной с началом в месте расположения, скажем, первого рыболова до его перемещения (рис. 12). Учитывая, что
, получаем

где
– расстояние между рыбаками,
– расстояние от первого рыбака до центра масс лодки (см. рис. 12). Последнее расстояние в условии задачи не задавалось и должно исчезнуть в конечной расчетной формуле.

Теперь рыбаки поменялись местами, лодка передвинулась на
, а центр масс системы остался на прежнем месте:

то есть

откуда

Если
, то
и лодка передвигается вправо (как на рисунке), если
, то
и лодка передвигается влево на такое же расстояние
. В нашей задаче
.
6. Два шара подвешены на нитях одинаковой длины 90см так, что они соприкасаются. Массы шаров 100г и 200г. Меньший шар отклоняют на угол 900 и отпускают. На какую высоту поднимутся шары после центрального абсолютно упругого соударения?
Решение:
Эта задача решается с помощью законов сохранения энергии и импульса. На движущийся вниз первый шар действует потенциальная сила тяжести, и его энергия, равная сумме кинетической и потенциальной
, сохраняется. Сила натяжения нити перпендикулярна к скорости шара и работы не совершает; трение не учитываем. Вверху равна нулю кинетическая энергия. Внизу, на подлете ко второму шару, равна нулю его потенциальная энергия. Таким образом, потенциальная энергия переходит в кинетическую:

где
– длина нити,
– скорость первого шара непосредственно перед ударом,

При абсолютно упругом ударе первого шара о второй сохраняется и импульс системы этих двух тел, и энергия:

где
и
– горизонтальные проекции скоростей шаров сразу после удара. Найдем эти скорости. Для этого перепишем систему законов сохранения в виде:

Поделив второе уравнение на первое, получим

Подставляя это в закон сохранения импульса, получаем скорости шаров после удара:

При
первый шар останавливается (
), а скорость второго после удара равна скорости первого до удара (
). Так как в нашей задаче
, то
, то есть первый (меньший) шар отскакивает назад.
Высоту, на которую поднимется шар после удара, найдем опять из закона сохранения энергии

где
и
– высоты подъемов первого и второго шара. Подставляя сюда найденные выражения для
,
и
, получаем результат:


7. На однородный цилиндр намотана гибкая нерастяжимая лента длиной 1 м, масса которой много меньше массы цилиндра. Свободный конец ленты закрепили, а цилиндр отпустили. Найти время разматывания ленты.
Решение:
Решим эту задачу двумя способами.
Способ 1.
Цилиндр совершает вращательное движение относительно оси, проходящей через его центр масс (точка C на рис. 13) и поступательное движение этой точки вниз. Уравнением поступательного движения является второй закон Ньютона. Запишем его в проекции на ось, направленную вертикально вниз,
(62)
Уравнение вращательного движения (50):

Здесь
угловое ускорение цилиндра,
- его момент инерции относительно оси, проходящей через центр масс (57),
– величина момента силы натяжения ленты
относительно точки С,
(63)
Момент силы тяжести
относительно этой точки равен нулю, т.к. равно нулю плечо этой силы.

Подставляя T из (63) в (62), получаем

Ускорение
точки С равно по величине тангенциальному ускорению поверхности цилиндра относительно точки С, которое в свою очередь равно
(19),

Подставляя это в предыдущее уравнение

находим ускорение оси цилиндра

и время
прохождения пути, равного длине ленты
:

Способ 2.
За время
лента разматывается на длину

где
– ускорение перемещения точки О (ускорение разматывания),
.