Канальный и физический уровни модели МОС. Их функции.
Физический уровень
Физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, передающих дискретную информацию, например, крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.
Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.
Примером протокола физического уровня может служить спецификация l0-Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных в кабеле, а также некоторые другие характеристики среды и электрических сигналов.
Здесь реализуется электрический, оптический, механический и функциональный интерфейсы с кабелем. Физический уровень также формирует сигналы, которые переносят данные, поступившие от всех вышележащих уровней.
На этом уровне определяется способ соединения сетевого кабеля с платой сетевого адаптера, в частности, количество контактов в разъемах и их функции. Кроме того, здесь определяется способ передачи данных по сетевому кабелю.
Канальный уровень
На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer) является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок не является обязательной для канального уровня, поэтому в некоторых протоколах этого уровня она отсутствует, например, в Ethernet и frame relay.
В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда, а также структуры, полученные из них с помощью мостов и коммутаторов. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, l00VG-AnyLAN.
В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.
В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень часто обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов «точка-точка» (как часто называют такие протоколы) могут служить широко распространенные протоколы РРР и LAP-B. В таких случаях для доставки сообщений между конечными узлами через всю сеть используются средства сетевого уровня. Именно так организованы сети Х.25. Иногда в глобальных сетях функции канального уровня в чистом виде выделить трудно, так как в одном и том же протоколе они объединяются с функциями сетевого уровня. Примерами такого подхода могут служить протоколы технологий АТМ и frame relay.
В целом канальный уровень представляет собой весьма мощный и законченный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня оказываются самодостаточными транспортными средствами и могут допускать работу поверх них непосредственно протоколов прикладного уровня или приложений, без привлечения средств сетевого и транспортного уровней. Например, существует реализация протокола управления сетью SNMP непосредственно поверх Ethernet, хотя стандартно этот протокол работает поверх сетевого протокола IP и транспортного протокола UDP. Естественно, что применение такой реализации будет ограниченным - она не подходит для составных сетей разных технологий, например Ethernet и Х.25, и даже для такой сети, в которой во всех сегментах применяется Ethernet, но между сегментами существуют петлевид-ные связи. А вот в двухсегментной сети Ethernet, объединенной мостом, реализация SNMP над канальным уровнем будет вполне работоспособна.
Тем не менее для обеспечения качественной транспортировки сообщений в сетях любых топологий и технологий функций канального уровня оказывается недостаточно, поэтому в модели OSI решение этой задачи возлагается на два следующих уровня - сетевой и транспортный
Простой кадр данных состоит из адреса отправителя, адреса получателя, управляющей информации, используемой для маршрутизации, а также указывающей на тип пакета и сегментацию, данных, т. е. собственно передаваемой информации, и CRC (остаток избыточной циклической суммы) - сведений, помогающих выявлять ошибки, что гарантирует правильный прием информации.