Методы сравнения с мерой ( Схемы и характеристика методов нулевого, замещения и совпадений)

Методы сравнения с мерой – методы измерений, в которых известную величину сравнивают с величиной, воспроизводимой мерой. Эти методы по сравнению с методом непосредственной оценки более точны, но несколько сложны. Группа методов сравнения с мерой включает в себя следующие методы: противопоставления, нулевой, дифференциальный, совпадения и замещения.
Определяющим признаком методов сравнения является то, что в процессе каждого измерительного эксперимента происходит сравнение двух однородных независимых друг от друга величин - известной (воспроизводимой мерой) и измеряемой. При измерениях методами сравнения используются реальные физические меры, а не их «отпечатки».
Сравнение может быть одновременным, когда мера и измеряемая величина воздействуют на измерительный прибор одновременно, и разновременным, когда воздействие измеряемой величины и меры на измерительный прибор разнесено во времени. Кроме того, сравнение может быть непосредственным и опосредованным. В первом случае измеряемая величина и мера непосредственно воздействуют на устройство сравнения, а во втором – через другие величины, однозначно связанные с известной и измеряемой величинами.
Одновременное сравнение осуществляется обычно методами противопоставления, нулевым,дифференциальным и совпадения, а разновременное - методом замещения.

Нулевой метод является разновидностью метода противопоставления, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Функциональная схема нулевого метода измерения приведена на рис. 2.5.
Здесь измеряемая величина X и мера X0 воздействуют на два входа измерительного прибора сравнения. Результирующий эффект воздействия определяется разностью этих величин, т.е. e = X – X0 . Изменяя величину, воспроизводимую мерой (это схематически указано на рисунке стрелкой), можно довести величину e до 0. Это обстоятельство отмечается индикатором нуля. Если e = 0, то Х = Хо, результат измерения Y есть полученное значениемеры, т.е. Y = X0 .

 

Поскольку на индикатор нуля воздействует разность величин, то его предел измерения может быть выбран меньшим, а чувствительность большей, чем у прибора для измерения X методом непосредственной оценки. Точность индикации равенства двух величин может быть весьма большой. А это ведет к повышению точности измерения. Погрешность измерения нулевым методом определяется погрешностью меры и погрешностью индикации нуля. Вторая составляющая обычно много меньше первой, практически точность измерения нулевым методом равна точности меры.
Примерами нулевых методов измерений являются: измерение массы на равноплечих весах с помещением измеряемой массы и уравновешивающих её гирь на двух чашках весов и полным уравновешиванием весов или измерение напряжения путем компенсации его напряжением образцового источника (в обоих случаях осуществляется непосредственное сравнение); а также измерение электрического сопротивления мостом с полным его уравновешиванием (опосредованное сравнение).
Нулевой метод измерения требует обязательного применения многозначных мер. Точность таких мер всегда хуже однозначных мер, кроме того, мы можем не иметь меры переменной величины. В таком случае нулевой метод не применим.

 

Метод замещения есть метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой [2].
Функциональная схема метода замещения изображена на рис. 2.9. В нем используется измерительный прибор непосредственной оценки.

Техника измерения состоит в следующем. Сначала на вход измерительного прибора подают измеряемую величину Х и отмечают показания прибора (отсчет) Y1 . После этого вместо измеряемой величины на тот же самый вход (это очень существенно) прибора подают величину Х0, воспроизводимую мерой. В этом случае показание прибора становится равным Y2. Изменяя величину, воспроизводимую мерой, добиваются равенства показаний, т.е. Y1= Y2 . При этом можно утверждать, что Х = Х0 независимо от погрешности измерительного прибора. Действительно, в первом случае получаем Y1= X + D1,
где D1 - погрешность измерительного прибора при получении отсчета Y1 .
При воздействии на прибор меры Y2= X + D2. Здесь D2 - погрешность измерительного прибора при получении отсчета Y2.
Поскольку мы добиваемся одинаковых показаний ( Y1 = Y2 ), а интервал времени между двумя измерениями невелик, то на одной и той же отметке шкалы прибора погрешность одинакова, т.е. D1 = D2 . Следовательно, из равенства Y1 = Y2 или X + D1 = X + D2 вытекает, что Х = Х0.
Исключение погрешности измерительного прибора из результата измерений является новым достоинством метода замещения. В нулевом методе измерения погрешность измерительного прибора проявляет себя тем, что нулевое показание может не соответствовать равенству измеряемой величины и меры, а в дифференциальном методе она представляет собой погрешность измерения разности меры и измеряемой величины. Для получения большой точности измерения нулевым и дифференциальным методом необходимо, чтобы погрешности измерительных приборов были невелики. А вот метод замещения не требует этого условия! Даже если погрешность измерительного прибора достаточно велика, это не скажется на результате измерения. Таким образом, методом замещения можно осуществить точное измерение, имея прибор с большой погрешностью. Нетрудно сообразить, что точность измерения методом замещения определяется погрешностью меры. Правда, при более строгом подходе к методу замещения следует учитывать два обстоятельства.
Во-первых, здесь сравнение разновременное, а за время между двумя измерениями погрешность измерительного прибора может несколько измениться, так что равенство D1 = D2 несколько нарушится. Теперь становится ясно, почему измеряемая величина и мера должны подаваться на один и тот же вход прибора. Это прежде всего связано с тем, что погрешность измерительного прибора на разных входах даже при одинаковых показаниях может быть разной!
Во-вторых, метод замещения сводится к получению одинаковых показаний прибора. Само равенство показаний может быть установлено с конечной точностью. А это также ведет к погрешности измерения. Точность установления равенства показаний будет больше в приборе, обладающем большей чувствительностью.
Следовательно, при измерении методом замещения следует использовать не точный, но чувствительный и быстродействующий прибор. Тогда остаточная погрешность, обусловленная измерительным прибором, будет невелика.
Метод замещения является самым точным из всех известных методов и обычно используется для проведения наиболее точных (прецизионных) измерений. Ярким примером метода замещения является взвешивание с поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов (вспомните - на один и тот же вход прибора). Известно, что таким методом можно правильно измерить массу тела, имея неверные весы (погрешность прибора), но никак не гири! (погрешность меры).

 

Метод совпадений (или метод «нониуса») представляет собой метод сравнения с мерой, в котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов.
Этот метод применяется в тех случаях, когда измеряемая величина меньше цены деления заданной меры. При этом применяются две меры с разными ценами деления, которые отличаются на размер оцениваемого разряда отсчетов.
Пусть имеем одну калиброванную меру с ценой деления Dxk1 и измеряемую величину Dx, которая меньше цены деления. В этом случае используют вторую меру с ценой деления Dxk2 . Таким образом, если чувствительность необходимо увеличить в п раз, то соотношение между ними будет иметь вид
Dxk2 = Dxk1×(1 - 1/n).
В частности, при n = 10 Dxk2 =0,9 ×Dxk1 .
Измеряемую величину Dx устанавливают между нулевыми отметками мер и находят число Nx, равное номеру совпавших делений мер (рис. 2.7). В этом случае справедливо соотношение Nx×Dxk1 = Dx +Nx×Dxk2 ,откуда
Dx = Nx×( Dxk1 - Dxk2) = Nx×(Dxk1 – 0,9×Dxk1) = Nx×0,1×Dxk1 .

 

 

Примером измерения методом совпадения может служить измерение длины детали с помощью штангенциркуля с нониусом, другим примером - измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, по частоте вспышек и смещению метки определяют частоту вращения детали. Метод "нониуса" находит также широкое применение при измерении временных интервалов двух близких частот (биений) и в других случаях.

 

 

Функциональная схема прибора, работающего по методу совпадений с масштабным преобразованием только величины, воспроизводимой мерой, показана на рис. 2.8. Здесь величина X0 однозначной меры подвергается масштабному преобразованию для выработки величин n1X0, n2X0, … njX0, … nkX0, Эти величина подаются на k- устройств сравнения, к ним же прикладывается и измеряемая величина Х. Логическое устройство указывает номер устройства сравнения, у которого Х - njX0 = min и определяет измеряемую величину на основе приближенного соотношения X = njX0. Такой метод измерения нашел применение также в цифровых приборах, измеряющих угловые и линейные перемещения. Метод совпадения требует наличия многозначных мер или масштабных преобразователей величины и величины, воспроизводимой мерой. Поэтому в измерительной технике он используется сравнительно редко.