Операционные системы и оболочки

Операционная система (ОС) представляет комплекс системных и служебных программных средств. С одной стороны, она опирается на базовое программное обеспечение компьютера, входящее в его систему ВIOS (базовая система ввода-вывода), с другой стороны, она сама является опорой для программного обеспечения более высоких уровней — прикладных и большинства служебных приложений. Приложениями операционной системы принято называть программы, предназначенные для работы под управлением данной системы.

Основная функция всех операционных систем — посредническая. Она заключаются в обеспечении нескольких видов интерфейса:

- интерфейса между пользователем и программно-аппаратными средствами компьютера (интерфейс пользователя);

- интерфейса между программным и аппаратным обеспечением (аппаратно-программный интерфейс);

- интерфейса между разными видами программного обеспечения (программный интерфейс).

Даже для одной аппаратной платформы, например такой, как IBM PC, существует несколько операционных систем. Различия между ними рассматривают в двух категориях: внутренние и внешние. Внутренние различия характеризуются методами реализации основных функций. Внешние различия определяются наличием и доступностью приложений данной системы, необходимых для удовлетворения технических требований, предъявляемых к конкретному рабочему месту.

История развития ОС насчитывает уже много лет. Операционные системы появились и развивались в процессе совершенствования аппаратного обеспечения компьютеров, поэтому эти события исторически тесно связаны. Развитие компьютеров привело к появлению огромного количества различных ОС, из которых далеко не все широко известны.

На самом верхнем уровне находятся ОС для мэйнфреймов. Эти огромные машины еще можно встретить в больших организациях. Мэйнфреймы отличаются от персональных компьютеров по своим возможностям ввода/вывода. Довольно часто встречаются мэйнфреймы с тысячью дисков и терабайтами данных. Мэйнфреймы выступают в виде мощных web-серверов и серверов крупных предприятий и корпораций. Операционные системы для мэйнфреймов в основном ориентированы на обработку множества одновременных заданий, большинству из которых требуется огромное количество операций ввода-вывода. Обычно они выполняют три вида операций: пакетную обработку, обработку транзакций (групповые операции) и разделение времени. При пакетной обработке выполняются стандартные задания пользователей, работающих в интерактивном режиме. Системы обработки транзакций управляют очень большим количеством запросов, например бронирование авиабилетов. Каждый отдельный запрос невелик, но система должна отвечать на сотни и тысячи запросов в секунду. Системы, работающие в режиме разделения времени, позволяют множеству удаленных пользователей одновременно выполнять свои задания на одной машине, например, работать с большой базой данных. Все эти функции тесно связаны между собой, и операционная система мэйнфрейма выполняет их все. Примером операционной системы для мэйнфрейма является OS/390.

Уровнем ниже находятся серверные ОС. Серверы представляют собой или многопроцессорные компьютеры, или даже мэйнфреймы. Эти ОС одновременно обслуживают множество пользователей и позволяют им делить между собой программно-аппаратные ресурсы. Серверы также предоставляют возможность работы с печатающими
устройствами, файлами или Internet. У Internet-провайдеров обычно работают несколько серверов для того, чтобы поддерживать одновременный доступ к сети множества клиентов. На серверах хранятся страницы web-сайтов и обрабатываются входящие запросы. UNIX и Windows 2000 являются типичными серверными ОС. Теперь для этой цели стала использоваться и операционная система Linux.

Следующую категорию составляют ОС для персональных компьютеров. Их работа заключается в предоставлении удобное интерфейса дли одного пользователя. Такие системы широко используются в повседневной работе. Основными ОС в этой категории являются операционные системы платформы Windows, Linux и операционная система компьютера Macintosh.

Еще один вид ОС - это системы реального времени. Главным параметром таких систем является время. Например, в системах управления производством компьютеры, работающие в режиме реального времени, собирают данные о промышленном процессе и используют их для управления оборудованием. Такие процессы должны удовлетворять жестким временным требованиям.

Встроенные операционные системы используются в карманных компьютерах и бытовой технике. Карманный компьютер — это маленький компьютер, помещающийся в кармане и выполняющий небольшой набор функций, например, телефонной книжки и блокнота. Встроенные системы, управляющие работой устройств битвой техники, не считаются компьютерами, но обладают теми же характеристиками, что и системы реального времени, и при этом имеют особые размер, память и ограничения мощности, что выделяет их в отдельный класс. Примерами таких операционных систем являются PalmOS и Windows СЕ (Consumer Electronics — бытовая техника).

Самые маленькие операционные системы работают на смарткартах, представляющих собой устройство размером с кредитную карту и содержащих центральный процессор. На такие операционные системы накладываются очень жесткие ограничения по мощности процессора и памяти. Некоторые из них могут управлять только одной операцией, например электронным платежом, но другие ОС выполняют более сложные функции.

Для операционных систем существует набор базовых понятий, таких как процессы, память и файлы, которые являются самыми важными для понимания общей идеи построения и функционирования ОС.

Ключевое понятие ОС - процесс. Процессом называют программу в момент ее выполнения. С каждым процессом связывается его адресное пространство - список адресов в памяти от некоторого минимума до некоторого максимума. По этим адресам процесс может занести информацию и прочесть ее. Адресное пространство содержит саму программу, данные к ней и ее стек. Со всяким процессом связывается некий набор регистров, включая счетчик команд, указатель стека и другие аппаратные ресурсы, а также вся информация, необходимая для запуска программы. Чтобы лучше разобраться в понятии процесса, проведем аналогию с системой, работающей в режиме разделения времени. Предположим, ОС решает остановить работу одного процесса и запустить другой, потому что первый израсходовал отведенную для него часть рабочего времени ЦП. Позже остановленный процесс должен быть запущен снова из того же состояния, в каком его остановили. Следовательно, всю информацию о процессе нужно где-либо сохранить. Так, процесс может иметь несколько одновременно открытых для чтения файлов. Связанный с каждым файлом указатель дает текущую позицию, т.е. номер байта или записи, которые будут прочитаны после повторно до запуска процесса. При временном прекращении действия процесса все указатели нужно сохранить так, чтобы команда «чтения» выполненная после возобновления процесса, прочла правильные данные. Во многих ОС вся информация о каждом процессе хранится в таблице операционной системы. Эта таблица называется таблицей процессов и представляет собой связанный список структур, по одной на каждый существующий в данный момент процесс.

В каждом компьютере есть оперативная память, используемая для хранения исполняемых программ. В простых ОС в конкретный момент времени в памяти может находиться только одна программа. Более сложные системы позволяют одновременно хранить в памяти несколько программ. Для того чтобы они не мешали друг другу, необходим защитный механизм. Этот механизм управляется операционной системой.

Другой важный, связанный с памятью вопрос — управление адресным пространством процессов. Обычно под каждый процесс отводится некоторое множество адресов, которые он может использовать. В простейшем случае, когда максимальная величина адресного пространства для процесса меньше оперативной памяти, процесс заполняет свое адресное пространство, и памяти хватает на то, чтобы содержать его целиком. Однако, что произойдет, если адресное пространство процесса окажется больше, чем ОЗУ компьютера, а процесс захочет использовать его целиком? В этом случае используется метод, называемый виртуальной памятью, при котором ОС хранит часть адресов в оперативной памяти, а часть на жестком диске и меняет их местами при необходимости. Управление памятью — важная функция операционной системы.

Файловая система еще одно базовое понятие, поддерживаемое виртуально всеми ОС. Основной функцией операционной системы является маскирование особенностей работы дисков и других устройств и предоставление пользователю понятной и удобной абстрактной модели независимых от устройств файлов. Системные вызовы необходимы для создания, удаления, чтения или записи файлов. Перед тем как прочитать файл, его нужно разместить на диске и открыть, а после прочтения его нужно закрыть. Все эти функции осуществляют системные вызовы.

При создании места для хранения файлов ОС использует понятие каталога как способ объединения файлов в группы. Для создания и удаления каталога также необходимы системные вызовы. Они же обеспечивают перемещение существующего файла в каталог и удаление файла из каталога. Содержимое каталога могут составлять файлы или другие каталоги. Эта модель создает структуру - файловую систему.

Иерархии процессов и файлов организованы в виде деревьев. Иерархия процессов обычно не очень глубока, в ней редко бывает больше трех уровней, тогда как файловая структура достаточно часто имеет четыре, пять и даже больше уровней в глубину.

Одной из важнейших функций ОС является управление устройствами ввода-вывода компьютера. Операционная система дает этим устройствам команды, перехватывает прерывания и обрабатывает ошибки. Она должна обеспечить простой и удобный интерфейс между устройствами и остальной частью системы. Интерфейс должен быть одинаковым для всех устройств с целью достижения независимости от применяемой аппаратуры. Программное обеспечение ввода-вывода составляет существенную часть операционной системы.

Устройства ввода-вывода можно разделить на две категории: блочные устройства и символьные устройства. Блочные устройства хранят информацию в виде блоков фиксированного размера, причем у каждого блока имеется свой адрес. Размеры блоков колеблются от 521 до 32 768 байт. Важное свойство блочного устройства состоит в том, что каждый его блок может быть прочитан независимо от остальных блоков. Наиболее распространенными блочными устройствами являются диски.

Другой тип устройств ввода-вывода — символьные устройства. Символьное устройство принимает или предоставляет поток неструктурированных символов. Оно не является адресуемым и не выполняет операцию поиска. Принтеры, сетевые адаптеры, мыши и большинство других устройств, не похожих на диски, можно считать символьными устройствами.

Такая классификация является условной. Некоторые устройства не попадают ни в одну из категорий.

Устройства ввода-вывода обычно состоят из механической и электронной частей. Механический компонент находится в самом устройстве. Электронный компонент устройства называется контроллером или адаптером. В современных компьютерах контроллеры встраиваются в материнскую плату или располагаются па самом устройстве ввода-вывода. Многие контроллеры способны управлять несколькими идентичными устройствами. Если интерфейс между контроллером и устройством является официальным стандартом ANSI, IEEE или ISO либо фактическим стандартом, то различные производители могут выпускать отдельно устройства и контроллеры, удовлетворяющие данному интерфейсу. Так производятся жесткие диски, соответствующие интерфейсу IDE (Integrated Drive Electronics — встроенный интерфейс накопителей) или SCSI (Small Computer System Interface - системный интерфейс малых компьютеров).

Часто интерфейс между устройством и контроллером является интерфейсом низкого уровня. С диска в контроллер поступает последовательный поток битов, который содержит номера цилиндра и сектора, размер сектора, коды синхронизации и другую служебную информацию.

Работа контроллера заключается в конвертировании последовательного потока битов в блок байтов и коррекцию ошибок. Обычно байтовый блок накапливается в буфере контроллера. Затем проверяется контрольная сумма блока, и если она совпадает с указанной в заголовке сектора, то блок считается принятым без ошибок. После этого блок копируется в оперативную память.

Контроллер монитора (видеоадаптер) работает на таком же низком уровне. Он считывает из памяти байты, содержащие символы, которые следует отобразить, и формирует сигналы, используемые для модуляции изображения на экране. Операционная система только инициализирует контроллер, задавая небольшое количество параметров, таких, как количество пикселов в строке и число строк на экране, а всю работу по управлению формирования изображения на экране выполняет контроллер.

Ключевая концепция разработки ПО ввода-вывода формулируется как независимость от устройств. Эта концепция означает возможность написания программ, способных получать доступ к любому устройству ввода-вывода без предварительного указания конкретного устройства. Например, программа, читающая данные из входного файла, должна одинаково успешно работать с файлом на жестком диске или компакт-диске. При этом не должны требоваться какие-либо изменения в программе. В качестве выходного устройства также может быть указан экран, файл на любом диске или принтер. Все проблемы, связанные с отличиями этих устройств, снимает операционная система.

Тесно связан с концепцией независимости от устройств принцип единообразного именования. Имя файла или устройства должно быть просто текстовой строкой или целым числом. Оно никак не должно зависеть от физического устройства.

Другим важным аспектом ПО ввода-вывода является обработка ошибок. Ошибки должны обрабатываться как можно ближе к аппаратуре. Если контроллер обнаружил ошибку чтения, он должен по возможности исправить эту ошибку сам. Если он не может это сделать, то ошибку должен обработать драйвер устройства. Многие ошибки бывают временными, например ошибки чтения, вызванные пылинками на читающих головках. Такие ошибки исчезают при повторном чтении блока. Только если нижний уровень не может сам справиться с проблемой, о ней следует информировать верхний уровень. Во многих случаях восстановление может осуществляться на нижнем уровне, так, что верхние уровни даже не будут знать о наличии ошибок.

Одним из ключевых вопросов является способ переноса данных — синхронный (блокирующий) или асинхронный (управляемый прерываниями). Большинство операций ввода-вывода на физическом уровне являются асинхронными — ЦП запускает перенос данных и переключается на другой процесс, пока не придет прерывание.

Еще одним аспектом ПО ввода-вывода является буферизация. Часто данные, поступающие с устройства, не могут быть сохранены там, куда они направлены. Например, когда пакет приходит по сети, ОС не знает, куда его поместить, пока не будет проанализировано его содержимое. Буферизация предполагает копирование данных в больших количествах, что часто является основным фактором снижения производительности операций ввода-вывода.

И последним понятием, которое связано с вводом-выводом, является понятие выделенных устройств и устройств коллективного использования. С некоторыми устройствами, такими как диски, может одновременно работать большое количество пользователей. При этом не должно возникать проблем при одновременном открытии на одном и том же диске нескольких файлов.

Существуют три различных способа осуществления операций ввода-вывода. Простейший вид ввода-вывода состоит в том, что всю работу выполняет центральный процессор. Этот метод называется программным вводом-выводом. ЦП вводит и выводит каждый байт или слово, находясь в цикле ожидания готовности устройства ввода-вывода. Второй способ представляет собой управляемый прерываниями ввод-вывод, при котором ЦП начинает передачу ввода-вывода для символа или слова, после чего переключается на другой процесс, пока прерывание от устройства не сообщит ему об окончании операции ввода-вывода. Третий способ заключается в использовании прямого доступа к памяти (DMA - Direct Memory Access), при котором отдельная микросхема управляет переносом целого блока данных и инициирует прерывание только после окончания операции переноса блока.