Логика — наука о формах мышления, законах и правилах рассуждения

МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО ПРЕДМЕТУ

«ЛОГИКА»

Для студентов очной формы обучения

 

Г.


СОСТАВИТЕЛИ:

© КАЗАРОВА Д.С., КАНДИДАТ ПСИХОЛОГИЧЕСКИХ НАУК, ДОЦЕНТ

ОБЩЕЮРИДИЧЕСКОГО ФАКУЛЬТЕТА

© ПОПОВ С.Е. КАНДИТАТ ЮРИДИЧЕСКИХ НАУК, НАЧАЛЬНИК

ЛИПЕЦКОГО ФИЛИАЛА ВОРОНЕЖСКОГО ИНСТИТУТА МВД РФ

 

 

РЕЦЕНЗЕНТЫ:

ПОЛЯКОВА И.П., КАНДИДАТ ФИЛОСОВСКИХ НАУК, ДОЦЕНТ

КАФЕДРЫ ФИЛОСОФИИ ЛГТУ

ТАТАРКИНА Н.И., КАНДИДАТ ПЕДАГОГИЧЕСКИХ НАУК, ДОЦЕНТ

КАФЕДРЫ ЭКОНОМИЧЕСКИХ И СОЦИАЛЬНО-ГУМАНИТАРНЫХ

ДИСЦИПЛИН ЛФ ВИ МВД РОССИИ

КЛИМОВА И.В.,. КАНДИДАТ ПСИХОЛОГИЧЕСКИХ НАУК,

ДОЦЕНТ КАФЕДРЫ ПСИХОЛОГИИ, ЛГТУ

 

РЕДАКТОР

КОРОТАЕВА А.Ш., МЕТОДИСТ УМЦ

 

Теоретический курс и задания к семинарским и практическим занятиям по курсу ЛОГИКА. – Липецк: Липецкий филиал ВИ МВД РФ, 2005 - стр. 72.

 

 

Логика содействует формированию связной и ясной речи, что необходимо юристу.

Логика воспитывает умение убеждать и обосновывать свои идеи. Если мы способны обосновать свою мысль, свое решение того или иного вопроса, то наша речь будет не только ясной, но и убедительной. Каким бы родом деятельности мы ни занимались, это – необходимое условие ее успеха.

Итак, что самое важное для юриста в изучении «логики» – логика вырабатывает привычку думать.

 

ИТС УМЦ, 2005

ТЕМАТИЧЕСКИЙ ПЛАН И РАСПРЕДЕЛЕНИЕ ВРЕМЕНИ

ПО ДИСЦИПЛИНЕ «ЛОГИКА»

  Наименование тем Всего часов Количество часов по видам занятий
Лекции Семинары
1. Введение. Предмет и значение логики. Основные этапы развития логики. Логика и язык
2. Этапы развития логики как науки. Основные направления современной символической логики -
3. Понятие как форма мышления
4. Суждение. Общая характеристика, классификация и отношения между суждениями
5. Основные законы (принципы) развития мышления. Понятие о логическом законе
6. Умозаключения как форма мышления. Определение и классификация
7. Понятие доказательства. Прямое и непрямое доказательство. Опровержение
8. Гипотеза как форма развития знания -
9. Логическая структура вопросов и ответов
10. Экзамен      
  Итого:

Тема 1. Введение, предмет и значение логики.

Основные этапы развития логики. Логика и язык

 

Логика интуитивна и общеизвестна, поскольку законы логики лежат в основе нашего мышления. Всякое движение мысли опирается на эти законы, и без них невозможно

Что же такое «логика»?

- Логикой называют науку о законах правильного мышления.

- Логика – наука о правильных формах мышления.

- Логика – наука о законах и операциях правильного мышления.

- Логика – наука, исследующая структуру мышления, раскрывает лежащие в его основе закономерности движения к истине.

Кстати: слово «логика» многозначно. Нередко говорят о логике событий, логике характера и т.п. Здесь имеется в виду определенная последовательность и взаимозависимость событий и поступков. Слово «логика» употребляется и в связи с процессами мышления (отнюдь не подразумевая их научность), например: “Логично?”

Определение должно быть четким, полным и ясным.

Логика — наука о формах мышления, законах и правилах рассуждения

 

Что понимается под мышлением?

Прежде всего – правильное мышление, которое соответствует требованиям:

а) определенности

б) последовательности

в) доказательности

Определенное – мышление точное, свободное от всякой сбивчивости.

Последовательное – значит свободное от внутренних противоречий, разрушаю щих связь между мыслями там, где эта связь необходима.

Доказательное – мышление, не просто формулирующее истину, но вместе с тем и указывающее основания, по которым она необ­ходимо должна быть признана истиной.

Мышление всегда осуществляется по определенным формам.

Например: “День был дождливый”, “Совершение преступления считается уголовно наказуемым деянием”, и т.д.

Форма – это способ связи составных частей мыслимого содержания

 

Без изучения и исследования форм, мышление станет безотчетным, потеряет точность, последовательность и доказательность.

Кстати: Каким бы ни было наше понимание составных частей содержания, одного этого еще недостаточно для уразу­мения высказывания. Мы можем понять все отдельные слова предложения, но не уяснить при этом смысла самого предложения. Так бывает, например, когда пред­ложение слишком длинно или слишком сложно. В этом случае мы понимаем составные части содержания, но не улавливаем логической формы высказывания.

Каждая форма мышления – это рассуждение, содержащее определенный способ связи мыслей между собой. Формы различаются по сложности.

Простейшая форма – понятие

Из понятий образуется суждение (высказывание)

Из суждений можно уже построить умозаключение,позволяющее вывести какое-то новое знание из известных суждений.

Как и любая наука, логика пользуется определенным языком. Под языком логики необходимо понимать, прежде всего, набор (совокупность) определенных понятий, используемых в качестве определений (терминов) и специальных симво­лов, позволяющих записывать высказывания в формализованном виде.

Например: “Функтор”, “Квантор”, “$х”, “"х” P, Q, и так далее.

Язык логики относится к искусственным языкам, которые создаются спе­циально для выполнения определенных задач. А всякий язык состоит из знаков.

Знаком называется материальный объект, который для некоторого интерпретатора (субъекта) выступает в качестве представителя какого-то другого предмета. Знак может быть представлен в любой форме (графической, икони­ческой, вербальной и других).

Языковыми знаками являются значащие слова, а в искусственных языках еще и значащие символы.

Например: слово «старше» – знак определенного возрастного отношения, символ «+» – знак операции сложения в языке арифметики.

Важнейшими характеристиками знака являются смысл и значение.

Значение знака (экстенсионал) – предмет, представляемый данным знаком

Смысл знака (интенсионал) – информация о предмете, которую содержит сам знак, или которая связывается с этим знаком в процессе человеческого общения или познания

Знаки могут быть пустыми и непустыми, описательными и неописательными.

Например:“гора выше Эвереста” – пустой знак (в множестве гор планеты знак не имеет значения); “студент” – неописательный знак (нет описательных (содер­жательных) терминов, в данном случае: «учащийся высшего учебного заведения»).

Содержательные (описательные) символы – выражения языка, имеющие значение даже, если взяты сами по себе.

Логические символы – выражения языка, не имеющие самостоятельного содержания, но в сочетании с одним или несколькими содержательными выраже­ниями образующие сложные выражения с самостоятельным содержанием.

Логические символы называются также логическими постоянными.

К содержательным символам относятся:

Имена – слово или словосочетание, обозначающее какой-либо предмет мысли и используемое в качестве логического подлежащего или логического сказуемого в высказываниях типа «А есть В».

Высказывания – предложение, выражающее мысль, которая является либо истинной, либо ложной. Истинность или ложность явля­ются логическими значениями высказывания.

Логические связки – логические символы, позволяющие из одних выска­зываний образовывать новые высказывания (и, или, если…то…, и т.д.).

Логические переменные – символы, позволяющие отвлечься от содержания рассуждения с целью выявления логической фор­мы (буквы латинского алфавита, специальные значки логических операций: ∩, U, другие)

 

План семинарских занятий по теме:Предмет и значение логики.

1. Что собой представляет форма мысли и как она выявляется?

2. Язык как знаковая система

3. Что изучает формальная логика?

4. Что такое знак? Основные характеристики знаков.

5. Основные виды имен.

6. Каковы принципы употребления имен?

7. Что такое антиномии отношения именования?

8. Семантические категории выражений языка

Упражнения и задачи:

1. Укажите, к какой категории символов относятся следую­щие выражения:

а) глагол,

б) имя существительное,

в) человек, первым побывавший на Северном полюсе,

г) Китай — азиатская страна,

д) в том и только том случае, если,

е) Ф. Тютчев — современник И. Тургенева,

ж) большой, круглый стеклянный предмет,

з) игра на публику,

и) тогда и только тогда, когда,

к) если и только если,

л) хорошо, когда наступает лето,

м) сообщение по секрету,

н) пассажиры уведомляются о том, что поезд опаздывает,

о) сделав добро, не надо хвастаться этим,

п) посоветуйте ему подумать,

р) некоторые предметы,

с) но,

т) холодный и пустынный дом,

у) его болезнь - аппендицит,

ф) не расточайте неумеренных похвал.

2. Какие из следующих имен являются конкретными, а ка­кие абстрактными:

а) водород,

б) получеловек-полулошадь,

в) белизна,

г) белый, круглый, светящийся предмет,

д) симпатия,

е) привлекательность,

ж) человечность,

з) химический элемент,

и) конкретность,

к) река, не впадающая ни в морс, ни в озеро,

л) число, равное отношению длины окружности к ее диа­метру,

м) гигантский летающий ящер мелового периода,

н) округлость форм и линий,

о) суффикс,

п) круг полномочий какого-либо органа или должностного лица,

р) главенствующая идея,

с) восхождение на труднодоступные вершины,

т) кабинет министров,

у) электричество,

ф) оркестр Большого театра.

3.Укажите, какие ошибки допускаются в следующих де­лениях:

а) Комедия делится на комедию ситуаций, комедию характеров, черную комедию, слезливую комедию, комедию идей и комедию нравов.

б) Умозаключения делятся на дедуктивные, индуктивные и аналогию.

в) Грамматические предложения делятся на простые, слож­носочиненные и сложносочиненные.

г) Леса делятся на хвойные и лиственные.

д) Международные договоры делятся на устные, письмен­ные, справедливые и несправедливые.

е) Числа делятся на простые, четные и нечетные.

ж) Электрические приборы делятся на измеряющие силу то­ка и измеряющие напряжение.

4. Постарайтесь прочесть все спрятанные предложения

 

тутутутумананнааннннаддллулулулугомомомммомрарааарарассеялсяяяяяякаааккаакккакккктоооотттолькохвзошлососососососсолнцеиприририр

 

паупаупаукскскскссссплеллеререереерсвсвсвоюпаупаууупппаутинуввввуглулулукомнатыыыыыы

 

ТЕСТ

1. Почему законы мышления в классической (формальной) логике получили название формальных законов?

1) поскольку они обращают внимание на формы, в которых протекают мыслительные операции;

2) так как они нацелены на раскрытие закономерностей мышления;

3) в силу того, что они обращены на содержание мышления.

 

2. Под логической формой понимают:

1) определенный порядок, в котором высказываются те или иные мысли;

2) способ организации или способ связи входящих в состав конкретной мысли ее элементов;

3) способ изложения мыслей.

 

3. Логика – это наука …

1) об умении вести дискуссию, спор.

2) о формальности человеческого мышления;

3) о формах и законах правильного мышления;

 

4.Что понимается под логическими законами?

1) это – требования, нормы, которым наше мышление должно подчинятся;

2) они ставят целью изобразить как совершается мышление;

3) они дают нам истинное знание при любых обстоятельствах.

 

5. В процессе рассуждения возможна логическая ошибка, поскольку:

1) из–за того, что само мышление человека является малоизученной областью.

2) человек в принципе не может познать мир;

3) субъект намеренно или ненамеренно нарушает правила мышления;

 

6. Логические парадоксы …

1) являются досадным недоразумением

2) свидетельствуют о принципиальной невозможности постижения мира;

3) способствуют дальнейшей выработке эффективных способов постижения и объяснения действительности.

 

7. Почему необходимо изучать логику?

1) чтобы побеждать в любых спорах;

2) чтобы доказательно рассуждать, не совершать логических ошибок;

3) чтобы уклоняться от неприятных дискуссий и не вступать в спор с вышестоящими органами.

 

8. Что понимается под логической культурой?

1) умение оперировать понятиями и суждениями, умозаключать и доказывать;

2) умение красиво излагать свои мысли;

3) доказать что угодно и где угодно.

 

9. Логическая культура личности определяется:

1) окружающей человека средой.

2) только биологическими факторами, т.е. врожденным потенциалом человека;

3) врожденным потенциалом человека, окружающей социальной средой;

 

10. В чем заключается существенное отличие формально-логических законов от законов природы?

1) в том, что законы природы объективны, а законы логики – субъективны;

2) законы природы в принципе не нарушаемы, а законы мышления нарушаются;

3) в том, что законы природы действуют сами по себе, а логические законы зависят от людей.

 

Тема 2. Этапы развития логики как науки.

Основные направления современной символической логики

 

Первоначально логика зародилась и развивалась в недрах философии –единой нерасчлененной науки, которая объединяла всю совокупность знаний об объективном мире и о самом человеке, и его мышлении. На этом этапе исторического развития логика отождествляла законы мышления с законами бытия.

Развитие науки логики на протяжении ряда столетий протекало по двум направлениям. Одно из них начиналось с древнегреческой логики (в особенности с логики Аристотеля), на основе которой развивалась логика в Древнем Риме, затем в Византии, Грузии, Армении, арабоязычных странах Ближнего Востока, в Западной Европе и России. Другое направление имело своим истоком индийскую логику, на основе которой развивалась логика в Китае, Тибете, Монголии, Корее, Японии, Индонезии, на Цейлоне.

Немецкий математик и логик Готтлоб Фреге (1848 - 1925) предпринял попытку свести математику к логике. Фреге определяет число, принадлежащее понятию, как объем этого понятия. Два понятия считаются равночисленными, если множества, выражающие их объемы, можно поставить во взаимнооднозначное соответствие друг с другом. Например, понятие «вершина треугольника» равночисленно понятию «сторона треугольника», и каждому из них принадлежит одно и то же число 3, являющееся объемом понятия «вершина треугольника». Г. Фреге предпринял попытку сведения довольно значительной части арифметики к логике, произвел некоторую математизацию логики. Символические обозначения, принятые им, очень громоздки. Фреге полагал, что он логически определил число и точно перечислил логические правила, с помощью которых можно определять новые понятия и доказывать теоремы, и что таким образом он и сделал арифметику частью логики. Фреге не подозревал, что предложенная им система не только не представляла собой логического обоснования содержательной арифметики, но была даже противоречивой. Это противоречие в системе Фреге обнаружил Бертран Рассел (1902), он их назвал парадоксами.

МНОГОЗНАЧНЫЕ ЛОГИКИ

В двузначной логике высказывание бывает истинным или ложным, то в многозначных логиках число значений истинности аргументов и функций может быть любым конечным и даже бесконечным, В настоящем приложении отрицание обозначается через Nx или , коньюкция – через Кху или х у, нестрогая дизъюкция – через Аху или х v у материальная импликация – через Сху или х → у. Значение функции от аргумента а будем записывать так: [а]. Тавтологией (или общезначимой) называется формула, которая при любых комбинациях значений входящих в нее переменных принимает значение «истина» (чаще всего в рассматриваемых системах «истина» обозначается цифрой 1).

Трехзначная система Лукасевича (1920)

В ней «истина» обозначается 1, «ложь» - 0, «нейтрально» - ½. В качестве основных функций взяты отрицание (обозначается nx) и импликация (Сху); производными являются конъюкция (Кху) и дизъюкция (Аху). Тавтология принимает значение 1.

Отрицание импликация соответственно определяют матрицами и равенствами:

 
 

 

 

1) [Nx] = l - [х];

2) [Сху] = 1, если [х]<[у];

3) [Сху] = 1 - [х] + [у], если [х]> [у], или в общем виде:

4) [Сху] = min (1,1 - [х] + [у])

Конъюкция определяется как минимум значении аргументов:

[Кху] = min ([х],[у])

Дизъюкция - как максимум значений х и у: [Аху] = max ([х], [у])

На основе данных определений отрицания, конъюкция и дизъюкция в системе Лукасевича не будут тавтологиями (законами логики). Поэтому логика Лукасевича не является отрицанием двузначной логики.

Трехзначная система Рейтинга

В двухзначной логике из закона исключенного третьего выводятся:

1) →х

2) х →

В системе Рейтинга импликация и отрицание отличаются от
определений этих операций у Лукасевича лишь в одном случае. «Истина»
обозначается 1, «ложь» - 0, «неопределенность» - ½. Тавтология принимает
значение 1.

 

       
   
 

1) [Сху] = 1, если [х]≤[у];

2) [Сху] = [у], если [х]> [у]/

 

Конъюкция и дизъюкция определены обычным способом как минимум и максимум значений аргументов.

Трехзначная система Бочвара

Система советского логика Д.А. Бочвара построена на разделении высказываний на имеющие смысл (т.е. истинные или ложные) и бессмысленные. Бочвар выделяет внешние формы (или функции) и внутренние. Внутренние формы Бочвар называет классическими содержательными функциями переменных высказываний, а внешние формы - неклассическими. У Бочвара «истина» обозначается R, «ложь» - F, «бессмысленность» - S Тавтология принимает значение 1; а,b,с... обозначают переменные высказывания.

Противоречиями являются следующие формулы:

1) а ┐a

2) а ≡ ┐а

3) а↔а

Здесь знак « ≡ » означает внешнюю равнозначность (эквивалентность), знак «↔» - внешнюю равносильность.

Цель системы: разрешение парадоксов классической математической логики методом формального доказательства бессмысленности определенных высказываний. Бочвар смог разрешить парадокс Рассела о множестве всех нормальных множеств, доказав несуществование такого предмета, как множество всех нормальных множеств, т.е. множество всех нормальных множеств нельзя рассматривать как фиксированный предмет, не изменяющийся в то время, пока о нем идет речь.

ИНТУИЦИОНИСТСКАЯ ЛОГИКА

Интуиционистская логика построена в связи с развитием интуиционистской математики. Интуиционистская школа основана в 1907 г. голландским математиком и логиком Л. Браурэром (1881 -1966).

Интуиционизм - философское направление в математике и логике, отказывающееся от использования абстракции актуальной бесконечности, отвергающее логику как науку, предшествующую математике, и рассматривающее интуитивную ясность и убедительность («интуицию») как последнюю основу математики и логики. Интуиционисты свою интуиционистскую математику строят с помощью финитных (конечных) средств на основе системы натуральных чисел, которая считается известной из интуиции. Интуиционизм включает в себя две стороны - 1. математическую и 2. философскую. Если первая сторона имеет рациональную часть (речь идет об интуиционистской математике или интуиционистской логике, а не об интуиционизме), то вторая сторона интуиционизма (его методологические, идеологические, философские основы) совершенно не приемлема.

Особенности интуиционистской логики вытекают из характерных признаков интуиционистской математики.

В нашей стране, проблемами интуиционистской логики занимаются К.Н. Суханов, М.И. Панов, А.Л. Никифоров, и др.

КОНСТРУКТИВНЫЕ ЛОГИКИ

Конструктивная логика своим рождением обязана конструктивной математике. Конструктивная математика может быть охарактеризована как наука о конструктивных процессах и нашей способности их осуществлять. В результате конструктивного процесса возникает конструктивный объект, т.е. такой объект, который задается эффективным (точным и вполне понятным), способом построения (алгоритмом).

ОТЛИЧИЯ МЕЖДУ КОНСТРУКТИВНОЙ И ИНТУЦИОНИСТСКОЙ

ЛОГИКАМИ

1. Различные объекты исследования

В основу конструктивной логики, которая является логикой конструктивной математики, положена абстракция потенциальной осуществимости, а в качестве объектов исследования допускаются лишь конструктивные объекты (слова в определенном алфавите).

В основу интуиционистской логики, включающейся логикой интуиционистской математики, положена идея «свободно становящейся последовательности» (т.е. последовательности, строящейся не по алгоритму), которую интуциониеты считают интуитивно ясной.

2. Обоснование дается с помощью идеалистически истолкованной интуиции, а обоснование конструктивной математики и логики дается на базе научного математического понятия алгоритма или эквивалентного ему понятия ресурсной функции.

3. Различные методологические основы. Методологической основой
конструктивного направления в математике отечественные исследователи считают положения материализма, с позиций которого критерием истинности познания (в том числе и научного) является практика.

4. Различные интерпритации.

5. Отличия ряда логических средств. Принцип: конструктивного направления - если имеется алгоритмический процесс и удалось опровергнуть, что он продолжается бесконечно, то, следовательно, процесс закончится. Интуиционистской логики - не признают этот принцип.

n – значная система Поста

Система Поста является обобщением двузначной логики, ибо при n = 2 в качестве частного случая мы получаем двузначную логику. Своей системе Пост дал интерпретацию. Значение истинности суть 1,2, ..., n (при n = 2), где n - конечное число. Тавтологией является формула, которая всегда принимает такое значение i, что l≤i≤S, l≤S≤n – 1; значения 1, ..., S называются выделенными или отмеченными; возможно, что S > 2.

Пост вводит два вида отрицания (N1 х и N2 х), соответственно называемые циклическим и симметричным. Они определяются путем матриц и посредством равенств.

Первое отрицание определяется двумя равенствами:

1. [N1x] = [х] +1 при [х]≤n – 1

2. [N1x] = l

Второе отрицание определяется одним равенством:

[N2x] = n - [х] + 1

Матрица, определяющая первое и второе отрицание, имеет вид:


Характерной особенностью двух отрицаний Поста является то, что при n = 2 эти отрицания совпадают между собой и с отрицанием двузначной логики, что подтверждает тезис: многозначная система Поста есть обобщение двузначной логики.

Конъюнкция и дизъюнкция определяются соответственно как максимум минимум значений аргументов.

 

Трехзначная система Поста (Р3) имеет следующую форму

 

q   p р3q   1 2 3 рv3q   1 2 3 p 3q   1 2 3 p 3q   1 2 3
1 2 3 2 2 3 3 3 3 1 1 1 1 2 2 1 2 3 1 2 3 1 2 2 1 1 1 1 2 3 2 2 2 3 2 1
Пояснения Max (p1q) Min(p1q) ( 3q)v3q (p 3q)/\3(q 3p)

 

 

В этих таблицах приняты обозначения, введенные Постом при n =3: первое отрицание обозначается через ( ~3 р), второе отрицание - через (~3 р), конъюнкция – через (р'3 q), дизъюнкция - через (р 3 q), импликация - через (р 3 q), эквиваленция - через (р ≡3 q).

Если в качестве значений истинности взяты лишь 1 «истина» и 3 «ложь», то из таблиц системы Поста вычленяют таблицы для отрицания, конъюнкции, дизъюнкции, импликации и эквиваленции двузначной логики.

В системе Поста тавтология принимает значение 1; закон исключенного третьего не является тавтологией ни для первого, ни для второго отрицания Поста, но является тавтологией закон исключенного четвертого для первого отрицания.

 

БЕСКОНЕЧНОЗНАЧНАЯ ЛОГИКА КАК ОБОБЩЕНИЕ

МНОГОЗНАЧНОЙ СИСТЕМЫ ПОСТА

Исходя, из системы Поста можно построить бесконечнозначную систему Значениями истинности являются 1 («истина»), 0 («ложь») и все дробные числа в интервале от 1 до 0, построенные в форме (½)k и в форме (½)k · (2k – 1), где k - целочисленный показатель. Это числа: 1; ½; ¼; ¾; ⅛; ⅞; (½)k · (½)k · (2k – 1), …, 0.

Операции: отрицание, дизъюнкция, импликация и эквиваленция в - определены следующими равенствами:

1. Отрицание: [~хор] = 1 – [р]

2. Дизъюнкция: [pvxoq] = max ([p], [q])

3. Конъюкция: [pvxoq] = min ([p], [q])

4. Импликация: [p xoq] = [ xopvxoq]

5. Эквиваленция: [p xoq] = [(p xoq) /\xo(q xop)]

Тавтологией, например, является формула, гласящая, что отрицание р, повторенное два раза, даст первоначальное значение р:

МОДАЛЬНЫЕ ЛОГИКИ

В классической двузначной логики рассматривались простые и сложные ассерторические суждения, т.е. такие, в которых не установлен характер связи между субъектом и предикатом. Например: «Морская вода - соленая» или «Дождь то начинал хлестать теплыми крупными каплями, то переставал».

В модальных суждениях раскрывается характер связи между субъектом и предикатом или между отдельными простыми суждениями в сложном модальном суждении. Например: «Необходимо соблюдать правила уличного движения» или «Если будет дуть попутный ветер, то, возможно, мы приплывем в гавань до наступления темноты».

Модальными являются суждения, которые включают модальные операторы (модальные понятия), т.е. слова «необходимо», «возможно», «случайно», «запрещено», «хорошо» и др.

ПОЛОЖИТЕЛЬНЫЕ ЛОГИКИ

Это логики, построенные без операции отрицания. Их можно разделить на два вида: 1. Положительные логики в широком смысле слова, или квазипозитивные логики. Они построены без операции отрицания, но отрицание может быть выражено средствами этой логической системы; 2. Положительные логики в узком смысле слова, т.е. логики, построенные без операции отрицания, причем отрицание не может быть выражено средствами этой системы

Ряд положительных логик основан на двух операциях: а) на импликации и конъюнкции; б) на дизъюнкции и конъюнкции; в) на импликации и дизъюнкции. Все инструкции о том, как произвести сборку замков, мебели, машин, инструментов, технических приборов и др., основаны на содержательном (не формализованном) использовании положительной логики.