Регуляция деятельности сердца. Внутри- и внесердечные механизмы. Гуморальная регуляция деятельности сердца.

Сердце — это мощный насос, перекачивающий по кровенос­ным сосудам около 10 т крови в сутки. Организм испытывает на себе за свою жизнь все невзгоды окружающей среды, и чтобы по­мочь ему адаптироваться к новым условиям, сердце также долж­но перестроить свою работу. Это достигается за счет деятельнос­ти ряда регуляторных механизмов. Условно их можно разделить на 2 группы: 1) внутрисердечные и 2) внесердечные, или экстракардиальные. Относительное постоянство параметров внутренней сре­ды организма, быстрое и точное приспособление гемодинамики к широкому разнообразию условий, в которых находится организм, достигаются благода­ря в высшей степени совершенным механизмам регуляции сердечной дея­тельности. К внутрисердечным регуляторным механизмам относят внутриклеточные, регуляцию межклеточных взаимодействий и собственно внутрисердечные нервные механизмы. Внесердечные воздействия представлены нервной и гу­моральной регуляцией. Внутриклеточный уровень регуляции заключается в способности кардиомиоцитов при выполнении ими специфической сократительной функции синтези­ровать различные белки в соответствии с уровнем их разрушения. Синтез белков происходит дифференцированно благодаря существованию специаль­ных ауторегуляторных механизмов. Процесс этот осуществляется кардиомиоцитами во взаимодействии с соединительнотканными клетками. Особенность кардиомиоцитов заключается в цикличности их обменных процессов, связанных с ритмом сердечной деятельности. В сердечной мышце межклеточная регуляция связана с наличием вставоч­ных дисков — нексусов, обеспечивающих транспорт необходимых веществ, соединение миофибрилл, переход возбуждения с клетки на клетку. Такая орга­низация позволяет миокарду реагировать на возбуждение как синцитий. В слу­чае выпадения функции нексусов нарушается одновременность прихода возбуж­дения к отдельным клеткам, синхронность сокращения мышечных волокон, появляется нарушение сердечного ритма. Межклеточная регуляция включает также взаимодействие кардиомиоцитов с соединительнотканными клетками, составляющими строму сердечной мышцы. Наряду с механической опорной функцией соединительнотканные клетки являются источником пополнения кар­диомиоцитов высокомолекулярными органическими соединениями, постоянно необходимыми для функции и для поддержания структуры клетки. Внутрисердечный уровень регуляции является автономным, хотя он вклю­чен и в сложную иерархию центральной нервной регуляции. Собственная нерв­ная регуляция сердца осуществляется метасимпатической нервной системой, нейроны которой располагаются в интрамуральных ганглиях сердца. Метасимпатическая нервная система обладает полным набором функци­ональных элементов, необходимых для самостоятельной рефлекторной дея­тельности: сенсорными клетками, интегрирующим интернейронным аппара­том, двигательными нейронами. Сенсорные нейроны обслуживают не только внутрисердечные механизмы регуляции. По их аксонам, проходящим в составе блуждающих и симпатичес­ких нервов, чувствительная импульсация может достигать высших отделов нервной системы. В свою очередь, на вставочных и моторных метасимпатических нейронах синаптически оканчиваются преганглионарные волокна блужда­ющего нерва и сердечных симпатических ветвей, т.е. метасимпатические ней­роны — общий конечный путь для импульсов внутрисердечного и центрального происхождения. Интракардиальный метасимпатический нервный аппарат регулирует ритм сердечных сокращений, скорость предсердно-желудочкового проведения, реполяризацию кардиомиоцитов, скорость диастолического расслабления. Функции сердечной части метасимпатической нервной системы особенно отчетливо выступают при трансплантациях сердца у теплокровных животных. После дегенерации всех нервных волокон внесердечного происхождения (сим­патических и парасимпатических) она остается неповрежденной в структурном и функциональном отношении. При разных нагрузках на организм с гомотрансплантированным сердцем кровообращение в большом круге меняется так же, как в нормальных условиях, и целиком обеспечивает потребности организма. Местные сердечные рефлексы, осуществляемые метасимпатической нервной системой, регулируют уровень сердечной деятельности в соответствии с потреб­ностями общей гемодинамики организма. Например, раздражение рецепторов растяжения при усилении притока крови и переполнении коронарных сосудов сопровождается ослаблением силы сердечных сокращений, уменьшением при­тока крови. В результате в артериальную систему перекачивается меньший объем крови. Она задерживается в венах, обладающих большей емкостью, предотвращая, таким образом, внезапный выброс излишней крови в артерии, который мог бы привести к тяжелым последствиям для организма. Опасно для организма и уменьшение сердечного выброса. Оно может вызвать критическое для жизни падение артериального давления. При недостаточном растяжении механорецепторов сердца из-за слабого заполнения его камер кро­вью возникает процесс рефлекторного возрастания силы сердечных сокращений, что в результате приводит к более интенсивному перекачиванию крови в аорту, усилению притока из вен и более полному заполнению камер во время диастолы. Следовательно, осуществляемые метасимпатической нервной системой внутрисердечные периферические рефлексы выполняют в организме защитную роль, поддерживая стабильность наполнения кровью артериальной системы. Гуморальная регуляция деятельности сердца осуществляется биологически активными веществами, выделяющимися в кровь и лимфу из эндокринных желез, а также ионным составом межклеточной жидкости. Эта регуляция в наибольшей степени присуща адреналину, секретируемому мозговым слоем надпочечников. Адреналин выделяется в кровь при эмоциональных нагрузках, физическом напряжении и других состояниях. Его взаимодействие с β-адренорецепторами кардиомиоцитов приводит к активации внутриклеточного фермента аденилатциклазы. Последний ускоряет образова­ние циклического АМФ (цАМФ). В свою очередь, цАМФ необходим для превра­щения неактивной фосфорилазы в активную. Активная фосфорилаза обеспечи­вает снабжение миокарда энергией путем расщепления внутриклеточного гликогена с образованием глюкозы. Адреналин повышает также проницае­мость клеточных мембран для ионов Са2+. Важное значение имеет гормон поджелудочной железы и кишки — глюкагон. Он оказывает на сердце положительный инотропный эффект путем стимуля­ции аденилатциклазы. Гормон щитовидной железы — тироксин — увеличивает частоту сердечных сокращений и повышает чувствительность сердца к симпати­ческим воздействиям. Гормоны коры надпочечников — кортикостероиды, био­логически активный полипептид — ангиотензин II, вещество энтерохромаффинных клеток кишки — серотонин — увеличивают силу сокращений миокарда. Большое влияние на деятельность сердечной мышцы оказывает ионный состав среды. Повышение содержания во внеклеточной среде К+ угнетает деятельность сердца. При этом вследствие изменения градиента концентрации иона увеличивается проницаемость мембран для К+, падают возбудимость, скорость проведения возбуждения и длительность ПД. В этих условиях синусно-предсердный узел перестает выполнять роль водителя ритма. Подобным образом на сердце влияют ионы НС03¯ и Н+. Ионы Са2+ повышают возбуди­мость и проводимость мышечных волокон, активируя фосфорилазу и обеспечи­вая сопряжение возбуждения и сокращения. Внутрисердечные механизмы регуляции. Эти механизмы делятся на 3 группы: 1) внутриклеточные, 2) гемодинамические (гетеро- и гомеометрические), 3) внутрисердечные периферические рефлексы. Внутриклеточные механизмы регуляции имеют место, например у спортсменов. Регулярная мышечная нагрузка приводит к усилению синтеза сократительных белков миокарда и появлению так называемой рабочей (физиологической) гипертрофии -утолщению стенок сердца и увеличению его размеров. Так, если масса нетренированного сердца составляет 300 г, то у спортсме­нов она увеличивается до 500 г. Гемодинамические, или миогенные, механизмы регуляции обеспечивают постоянство систолического объема крови. Сила сокращений сердца зависит от его кровенаполнения, т.е. от ис­ходной длины мышечных волокон и степени их растяжения во время диастолы. Чем больше растянуты волокна, тем больше при­ток крови к сердцу, что приводит к увеличению силы сердечных сокращений во время систолы — это «закон сердца» (закон Фран­ка— Старлинга). Такой тип гемодинамической регуляции называ­ется гетерометрическим. Она объясняется способностью Са2+ выходить из саркоплазматического ретикулума. Чем больше растянут саркомер, тем больше выделяется Са2+ и тем больше сила сокращений сердца. Этот механизм саморегуляции включается при переме­не положения тела, при резком увеличении объема циркулиру­ющей крови (при переливании), а также при фармакологичес­кой блокаде симпатической нервной системы бета-симпатолитиками. Другой тип миогенной саморегуляции работы сердца — гомеометрический не зависит от исходной длины кардиомиоцитов. Сила сердечных сокращений может возрастать при увеличении частоты сокращений сердца. Чем чаще оно сокращается, тем вы­ше амплитуда его сокращений («лестница» Боудича). При повы­шении давления в аорте до определенных пределов возрастает противонагрузка на сердце, происходит увеличение силы сердеч­ных сокращений (феномен Анрепа). Внутрисердечные периферические рефлексы относятся к тре­тьей группе механизмов регуляции. В сердце независимо от нерв­ных элементов экстракардиального происхождения функциони­рует внутриорганная нервная система, образующая миниатюр­ные рефлекторные дуги, в состав которых входят афферентные нейроны, дендриты которых начинаются на рецепторах растяже­ния на волокнах миокарда и коронарных сосудов, вставочные и эфферентные нейроны (клетки Догеля I, II и III порядка), аксоны которых могут заканчиваться на миокардиоцитах, расположен­ных в другом отделе сердца. Так, увеличение притока крови к пра­вому предсердию и растяжение его стенок приводит к усилению сокращения левого желудочка. Этот рефлекс можно заблокиро­вать с помощью, например, местных анестетиков (новокаина) и ганглиоблокаторов (бензогексония). Эфферентный нейрон внутрисердечной рефлекторной дуги может быть общим с эфферентным нейроном парасимпатическо­го нерва (n. vagus), который иннервирует сердечную мышцу. Внесердечные (эстракардиальные) механизмы регуляции. Эти механизмы также работают по рефлекторному принципу в них главную роль играют парасимпатическая нервная система (п. vagus) и симпатическая нервная система (n. sympaticus). Рефлекторная дуга экстракардиального рефлекса начинается от механорецепторов предсердий — А-рецепторов, реагирующие на сокращение мускулатуры предсердий и их напряжение, и В рецепторов, возбуждающихся в конце систолы желудочков и реагирующих на пассивное растяжение мускулатуры предсердие (увеличение внутрисердечного давления). От этих рецепторов начинаются афферентные пути, которые представлены миелинизированными волокнами, идущими в составе блуждающего нерва. Другая группа афферентных нервных волокон отходит от свободных нервных окончаний густого субэндокардиального сплетения безмякотных волокон, находящихся под эндокардом Они идут в составе симпатических нервов. Афферентные волокна, идущие в составе блуждающего нерва, достигают продолговатого мозга, где находится центр блуждающего нерва. Его называют ингибирующим сердечным центром, в нем расположены первые, или преганглионарные, нейроны, регулирующие работ сердца. Аксоны этих нейронов, составляющих блуждающие нерв, достигают сердца, в их окончаниях выделяется ацетилхолин, который через Н-холинорецепторы передает возбуждение на интрамуральный нейрон, или ганглий. В нем находится второе нейрон — постганглионарный, аксон которого иннервирует проводящую систему сердца и коронарные сосуды, контактируя с М — холинорецепторами. Волокна правого блуждающего нерва иннервируют синоатриальный узел, левого — атриовентрикулярный. Блуждающие нерв не иннервирует желудочки. Симпатические нервы равномерно иннервируют все отделы сердца, включая желудочки. Первые нейроны находятся в боковых рогах грудных сегментов спинного мозга (T1 — T5). Их преган­глионарные волокна прерываются в шейных и верхних грудные симпатических узлах и звездчатом ганглии, где находятся вторые нейроны, от которых отходят постганглионарные волокна, выде­ляющие в своих окончаниях адреналин и норадреналин. Контак­тируя с бетаадренорецепторами, они передают свои влияния не сердечную мышцу. Характер влияний блуждающих и симпатических нервов на работу сердца. Различают четыре типа влияний блуждающего и симпатичес­кого нервов на работу сердца: 1) инотропное — на силу сердечныx сокращений (инос-сила); 2) хронотропное — на частоту сердечных сокращений (хронос-время); 3) батмотропное — на возбудимость сердечной мышцы; 4) дромотропное — на проводи­мость импульсов по сердечной мышце. Впервые тормозное влияние блуждающих нервов на работу сердца было показано братьями Вебер в 1845 г. Раздражение пе­риферического конца перерезанного блуждающего нерва приво­дит к уменьшению амплитуды сердечных сокращений, т.е. к отри­цательному инотропному эффекту, урежению сердечных сокра­щений — отрицательному хронотропному, уменьшению возбуди­мости и проводимости — отрицательному батмотропному и дромотропному эффектам. Сильное раздражение блуждающего нер­ва вызывает остановку сердца в диастоле. Механизм отрицатель­ного влияния блуждающего нерва на частоту сердечных сокраще­ний можно представить в виде цепочки следующих друг за другом процессов: стимуляция блуждающего нерва -> выделение в его окончаниях ацетилхолина -> взаимодействие с М-холинорецепторами -> увеличение проницаемости мембраны клеток пейсмекера для ионов К+ и уменьшение для Са2+ -> замедление МДД -> увеличение мембранного потенциала -> отрицательный хронотропный эффект. При сильном раздражении блуждающего нерва может возникнуть гиперполяризация клеток синоатриального уз­ла и полная остановка сердца. При продолжающемся раздражении блуждающего нерва прекратившиеся сокращения могут вновь восстановиться — это феномен ускользания сердца из-под влияния блуждающего нерва. Отрицательное влияние блуждающего нерва на сердце может быть снято с помощью атропина — блокатора М-холинорецепторов. Кроме того, ацетилхолин очень быстро разрушается фермен­том ацетилхолинэстеразой (АХЭ), поэтому эффект нерва кратко­временный. Существует такое понятие, как тонус вагуса — это постоян­ное тормозное влияние блуждающего нерва на сердце, особенно в состоянии покоя, т.е. в ночное время («ночь — царство вагуса»). Наличие тонуса блуждающего нерва доказывается полной денервацией сердца, после чего оно будет работать чаще, чем до денервации. Впервые влияние симпатического нерва на сердце было опи­сано братьями Цион (1867 г.). Раздражение периферического конца перерезанного симпатического нерва оказывает на сердце положительный ино-, хроно-, батмо-, дромотропный эффект. При этом цепь процессов такова: стимуляция симпатического нерва -> выделение в его окончаниях норадреналина -> взаимодействие с бета-адренорецепторами на мембране клеток синоатриального узла -> повышение проницаемости для Na+ и Са2+ -> уменьшение МП -> ускорение МДД -> положительный хронотропный эффект. Положительное влияние симпатической нервной системы на сердце можно уменьшить или устранить с помощью бета-блокаторов, например обзидана. Свое влияние симпатические нервы, отличие от блуждающего, оказывают не в покое, а при физическом или эмоциональном напряжении, в экстремальной ситуации. При чрезмерной активности симпатической нервной системы могут появиться эктопические очаги возбуждения в сердце, что приведет к возникновению экстрасистол. И.П.Павлов (1887 г.) обнаружил в составе симпатической нерва волокна, раздражение которых увеличивало силу сердечных сокращений, не изменяя при этом их частоту. Эти волокна были названы усиливающим, или трофическим, нервом, так как стимулировали обменные процессы и питание сердечной мышцы. В настоящее время стало известно, что при раздражении нервов, иннервирующих сердце, в синаптическую щель, помимо основных медиаторов, выделяются и другие биологически активные вещества, в частности пептиды. Они обладают модулирующим действием в отношении основного медиатора. Так, опиоидные пептиды (энкефалины и эндорфины) угнетают эффекты раздражения блуждающего нерва, а пептид дельта-сна усиливает вагусную брадикардию. Гуморальная регуляция деятельности сердца На работу сердца, прежде всего влияют медиаторы ацетилхолин, выделяющийся в окончаниях парасимпатических нервов, он тормозит деятельность сердца, а также адреналин и норадреналин — медиаторы симпатических нервов, оказывающие на сердце положительный ино- и хронотропный эффекты. Ацетилхолин: был открыт Отто Леви в 1921 г. в эксперименте на изолированных сердцах лягушки. Положительное, подобное адреналину, влияние на сердце было отмечено у дофамина. Кортикостероиды, ангиотензин, серетонин оказывают положительный инотропный эффект. Глюкагон, активируя аденилатциклазу, увеличивает силу и частоту сердечных сокращений. Тироксин и трийодтиронин оказывают положительный хронотропный эффект, кортикостероид, и ангиотензин — положительный инотропный. Аденозин расширяет коронарные сосуды, увеличивает коронарный кровоток в 6 раз, оказывая положительное инотропное хронотропное влияние на сердце. Ионы Са2+ увеличивают силу сокращений и повышают возбудимость сердечной мышцы за счет активации фосфорилазы. Передозировка ионов Са2+ вызывает остановку сердца в систоле. Небольшое повышение концентрации ионов К+ в крови (до4 ммоль/л) снижает МП и увеличивает проницаемость для эти ионов. Возбудимость миокарда и скорость проведения возбуждения при этом возрастают. Если увеличить концентрацию К+ в 2 раза, то возбудимость и проводимость сердца резко снижаются и может произойти его остановка в диастоле. Если ионов К+ недо­стает (гипокалиемия), что наблюдается при приеме диуретиков, которые выводят вместе с водой и К+, то возникает аритмия серд­ца и, в частности, экстрасистолия, поэтому одновременно с диуретиками необходимо принимать препараты, сберегающие К+ (например, панангин). Предсердия вырабатывают атриопептид, или натрийуретический гормон, в ответ на растяжение их стенок. Он расслабляет гладкомышечные клетки мелких сосудов, повышает диурез, выде­ляет натрий с мочой (натрийурез), уменьшает объем циркулиру­ющей крови, подавляет секрецию ренина, тормозит эффекты ангиотензина II и альдостерона, снижает артериальное давление.

37. Движение крови по сосудам. Факторы, обуславливающие движение крови по сосудам.
Присущие крови функции могут выполняться только при условии ее постоянного движения по кровеносным сосудам. У позвоночных животных кровь находится в системе эластичных сосудов — артерий, вен, капилляров, — не выходя из этой системы. В связи с тем, что кровь всегда остается внутри замкнутого объема, систему кровообращения позвоноч­ных принято называть замк­нутой. Замкнутая система характеризуется тем, что давление в ней относительно велико и постоянно. Для поддержания давления в промежутках между сердеч­ными сокращениями в системе необходимо наличие эластических стенок. По­мимо того, потребности в кровоснабжении разных органов не только различны, но постоянно изменяются в зависимости от деятельности снабжаемых кровью органов. Отсюда становится необходимым существование ряда специальных контролирующих и регулирующих механизмов. Наконец, в замкнутой системе кровь быстро возвращается к сердцу. У млекопитающих большой круг кровообращения начинается от левого желудочка сердца аортой, которая ветвится на многочисленные артерии, даю­щие начало регионарным сосудистым сетям. По мере ветвления число артерий возрастает, диаметр их уменьшается. Эти артерии снабжают кровью каждый отдельный орган (кожу, мышцы, печень, сердце, легкие, мозг и т. д.). В толще органов мельчайшие артерии (артериолы) формируют густое сплетение мелких сосудов с тонкими стенками— капиллярную сеть, Именно здесь происходит обмен веществами между клетками и, кровью. Общая площадь поверхности всех капилляров организма дос­тигает у человека 1000 м2. Сливаясь между собой, капилляры образуют венулы. Процесс слияния заканчивается двумя большими ве­нами — краниальной и каудалъной полыми венами, впадающими в правое предсердие. Таково общее правило. Исключением явля­ются кишка и селезенка; сосуды, несущие от них венозную кровь, разветвляются в печени еще на одну систему капилляров (портальное кровообращение), после чего кровь по пече­ночным венам попадает в каудальную полую вену. Малый круг кровообращения начинается от правого желудочка легочной артерией, ко­торая, разветвляясь, переходит в сосудистые сети легких и заканчивается легочными вена­ми, впадающими в левое предсердие. В итоге оба круга кровообращения замыкаются. Ле­гочная артерия — единственная в организме артерия, по которой из правого желудочка в легкие течет венозная кровь, а легочная вена — единственная вена, по которой из легких в левое предсердие течет обогащенная кислородом артериальная кровь. Помимо большого и малого круга кровообращения в организме существу­ет система лимфатических сосудов. Эта система осуществля­ет ресорбцию межклеточной жидкости и белка из тканей, образование лимфы и отведение ее в венозную систему. В органах наряду с кровеносными капил­лярами существуют сети лимфатических капилляров, из которых начинают­ся лимфатические сосуды. Из сплетений мелких лимфатических сосудов фор­мируются более крупные. Они отводят лимфу из органов к регионарным лимфатическим узлам. Пройдя через узлы, лимфа поступает в лимфатичес­кие стволы, а затем в грудной проток и правый лимфатический проток, впадающие в вены. Движение крови по кровеносным сосудам подчиняется законам гемодинамики, являющейся частью гидродинамики — науки о движении жидкостей по трубкам. Основным условием кровотока является градиент давления между различными отделами сосудистой системы. Давление в сосудах создается работой сердца. Кровь течет из области высокого давления в область низкого. При движении ей

приходится преодолевать сопротивление, создаваемое, во-первых, трением частиц крови друг о друга, во-вторых, трением частиц крови о стенки сосуда. Особенно велико это сопротивление в артериолах и прекапиллярах. Сопротивление (R) в кровеносном сосуде можно определить по формуле Пуазейля:

R = 8lh /pr,

где l — длина трубки (сосуда); h — вязкость жидкости (крови); p — отношение окружности к диаметру; r — радиус трубки (сосуда). Значит, сопротивление зависит от длины сосуда, вязкости крови, которая в 5 раз больше вязкости воды, и радиуса сосуда. В соответствии с законами гидродинамики количество жидкости (крови), протекающей через поперечное сечение сосуда за единицу времени (мл/с), или объемная скорость кровотока (Q), прямо пропорциональна разности давления в начале (Р1) сосудистой системы — в аорте и в ее конце (Р2), т.е. в полых венах, и обратно пропорциональна сопротивлению (R) току жидкости:

Q = (Р1- P2)/R.

В связи с замкнутостью кровеносной системы объемная скорость кровотока во всех ее отделах (во всех артериях, всех капиллярах, всех венах) одинакова. Зная объемную скорость кровотока, можно рассчитать линейную скорость или расстояние, проходимое частицей крови за единицу времени:

V = Q/ pr2.

В отличие от объемной, линейная скорость изменяется по ходу сосудистого русла и обратно пропорциональна суммарному поперечному сечению всех сосудов данного калибра. Самое узкое место в сосудистой системе — это аорта, поэтому она имеет самую большую линейную скорость кровотока — 50 — 60 см/с. В артериях она равна 20 — 40 см/с, в артериолах — 5 мм/с, в венах — 7-20 см/с; самый широкий суммарный просвет, в 500 — 600 раз превышающий диаметр аорты, имеют капилляры, поэтому линейная скорость в них минимальная — 0,5 мм/с. Помимо объемной и линейной скорости кровотока, существует еще один гемодинамический показатель — время кругооборота крови — это время, в течение которого частица крови пройдет и большой и малый круг кровообращения, оно составляет 20 — 25 с.