Примеры заданий частей А, В

 

1. В углеводороде со структурной формулой

 

 

1) число первичных атомов С меньше числа вторичных

2) число вторичных атомов С больше числа третичных

3) число первичных атомов С равно числу третичных

4) число вторичных атомов С равно числу третичных

 

2. Правильная структурная формула углеводорода – это

1)

2)

3)

4)

 

3. Название углеводорода с цепью атомов углерода – это

 

 

1) 2,3,5‑триметилгексан

2) 2,3,4‑триметилгексан

3) 2,5‑диметилгептан

4) 3,4‑диметилпептан

 

4–7. Класс органических соединений с названием

4. спирты

5. фенолы

6. альдегиды

7. карбоновые кислоты отвечает функциональной группе

1) – С(О)–

2) – СООН

3) – С(Н)O

4) – ОН

 

8–10. Молекулы класса соединений с названием

8. простые эфиры

9. сложные эфиры

10. белки

содержат функциональную группу

1) С – О–С

2) С – С(О) – О – С

3) C – OH

4) С(О) – N(H) – С

 

11. Функциональные группы углеводов – в наборах

1) СООН, ОН

2) ОН, СО

3) С(Н)O, OH

4) СО, С(Н)O

 

12–15. Органическое соединение с формулой

12. C2H5NH2

13. c2h5no2

14. NH2CH2C00H

15. (C2H5)3N относится к классу

1) аминокислот

2) аминов

3) нитросоединений

4) белков

 

16–19. Органическое соединение с формулой

16. СН3–О – С2Н5

17. С2Н5–С(Н)O

18. СН3–С(О) – О – С2Н5

19. С6Н5–СН2ОН относится к классу

1) сложных эфиров

2) простых эфиров

3) альдегидов

4) спиртов

 

20. Этан вступает в реакции

1) изомеризации

2) замещения

3) присоединения

4) дегидрирования

 

21. Для олефинов характерны реакции

1) замещения

2) полимеризации

3) присоединения

4) разложения

 

22. Бензол склонен вступать в реакции

1) нейтрализации

2) присоединения

3) полимеризации

4) изомеризации

 

23–25. Взаимодействие между реагентами

23. С6Н6, HNO3

24. C2H4, НCl

25. C2H2, КMnO4

по отношению к углеводороду называется

1) окислением

2) присоединением

3) восстановлением

4) замещением

 

26. Установите соответствие между формулой функциональной группы и классом органических соединений, который она определяет.

 

 

27. Установите соответствие между названием соединения и классом, к которому оно относится

 

 

Углеводороды. Гомология и изомерия. Химические свойства и способы получения

 

Алканы. Циклоалканы

 

Алканы (парафины) – это соединения углерода с водородом, в молекулах которых атомы углерода соединены между собой одинарной связью (предельные углеводороды). Общая формула гомологического ряда алканов СnН2n+2. Радикал, получающийся при отрыве одного атома водорода от молекулы предельного углеводорода, называется алкилож, общая формула алкилов СnН2n+1.

Формулы и названия первых шести алканов (С1–С6) и отвечающих им радикалов:

 

 

Для радикала С5Н11 использование названия амил не рекомендуется. Для составления названий алканов с разветвленной цепью, например

 

 

выбирают самую длинную углеродную цепь (в примере – 5 атомов) и получают основу названия (5 – пентан). Нумеруют цепь (от 1 до 5) так, чтобы заместители (–СН3) получили наименьшие номера (2 и 3). В названии арабскими цифрами указывают положение заместителей, а приставками ди – 2, три – 3, тетра – 4 и т. д. – число одинаковых заместителей. Таким образом, в нашем примере алкан должен быть назван 2,3‑диметилпентан.

При наличии разных заместителей их названия расставляют по алфавиту, т. е., например, сначала метил, а затем этил.

Для некоторых разветвленных предельных углеводородов используются, наравне с систематическими, традиционные названия, например, для алканов состава С4Н10 и С5Н12 с формулами:

 

 

Такие же названия используются для разветвленных радикалов:

 

 

При обычных условиях первые алканы – метан, этан, пропан и бутан (С1–С4) – представляют собой газы без цвета и запаха, малорастворимые в воде. Последующие гомологи (С5–C15) – жидкости (при 20 °C), высшие гомологи (C16 и выше) – твердые вещества.

В алканах атомные орбитали углерода имеют sр3‑гибридизацию; четыре электронных облака атома углерода направлены в вершины тетраэдра под углами 109,5°. Ковалентные связи, образуемые каждым атомом углерода, в алканах малополярны.

Поэтому алканы – сравнительно инертные вещества, вступают только в реакции замещения, протекающие с симметричным (радикальным) разрывом связей С – Н. Эти реакции обычно идут в жестких условиях (высокая температура, освещение). В результате становится возможным замещение водорода на галоген (CI, Br) и нитрогруппу (NO2), например, при обработке метана хлором:

 

 

Вторая и последующие стадии реакции протекают легче, чем первая, из‑за смещения электронной плотности к атому хлора:

 

 

и увеличения подвижности остающихся атомов водорода. Названия продуктов: СН3Cl – хлорметан, СН2Cl2 – дихлорметан, СНCl3 – трихлорметан (хлороформ), СCl4 – тетрахлорметан (тетрахлорид углерода).

В тех алканах, где кроме первичных есть также вторичные и третичные атомы углерода, замещение обычно протекает с образованием смеси однозамещенных продуктов (т. е. в каждой молекуле замещается один атом водорода), например:

 

 

Циклоалканы – предельные углеводороды циклического строения, общая формула гомологического ряда СnH2n (п

3), формула совпадает с таковой для алкенов. Важнейшие циклоалканы:

 

 

При комнатной температуре С5Н10 и С6Н12 – бесцветные жидкости, малорастворимые в воде. Химические свойства циклоалканов подобны свойствам алканов, например:

 

 

Получение: источниками алканов и циклоалканов в промышленности служат нефть, природный газ, каменный уголь. В лаборатории применяют такие способы синтеза алканов:

1) реакция Вюрца – действие натрия на галогенпроизводные углеводородов:

 

 

2) каталитическое гидрирование этиленовых углеводородов (катализаторы Pt, Pd, Ni):

 

 

3) сплавление солей карбоновых кислот с гидроксидом натрия:

 

 

Циклоалканы синтезируют из дигалогенпроизводных алканов:

 

 

Алканы широко используются как исходное сырье в химической промышленности, моторное топливо (бензин, керосин и др.); циклоалканы применяются в органическом синтезе.

При горении метана выделяется много теплоты:

 

 

Поэтому его (в виде природного газа) применяют в качестве топлива в быту и в промышленности.

 

Алкены. Алкадиены

 

Алкены (олефины) – это углеводороды, в молекулах которых содержатся атомы углерода, соединенные между собой двойной связью (непредельные углеводороды ряда этилена). Простейший представитель – этилен С2Н4, общая формула гомологического ряда этиленовых углеводородов СnН2n (при п ≥ 2).

Систематические названия олефинов производятся от корней названий алканов с заменой суффикса – ан → – ен:

 

 

Сохраняются также традиционные названия с заменой суффикса – ан на – илен: С2Н4 – этилен, С3Н6 – пропилен, С4Н8 – бутилен; использование названия амилен для алкена С5Н10 не рекомендуется.

Положение двойной связи С=С в изомерах строения (начиная с алкена С4) указывается цифрой после названия:

 

 

Радикал этилена – этенил СН2=СН – обычно называют винил, пропена – пропенил СН2=СН – СН2 – именуют аллил.

Другой вид изомерии в непредельных углеводородах, помимо структурной изомерии, осуществляется потому, что атомы углерода, образующие двойную связь, находятся в sр2‑гибридном состоянии; σ‑составляющая двойной связи С=С и σ‑связи С – Н лежат в одной плоскости под углом 120° друг к другу, а π‑составляющая двойной связи С=С представляет собой электронное облако, вытянутое в направлении, перпендикулярном плоскости о‑связей. Следствием такого строения алкенов является возможность геометрической изомерии (или цис‑транс‑изомерии) в зависимости от положения заместителей (атомов или радикалов):

 

 

(цис – от лат. «рядом, по одну сторону», транс – от лат. «напротив, по разные стороны»).

Алкены С2–С4 при комнатной температуре – бесцветные газы со слабым запахом нефти, малорастворимые в воде; алкены С5–C18 – жидкости, алкены C19 и выше – твердые вещества.

Важнейшие химические свойства алкенов определяются тем, что в силу меньшей прочности π‑связи (по сравнению с σ‑связью) она легко разрывается, в результате чего протекают реакции присоединения и образуются насыщенные органические соединения. Как правило, такие реакции идут в мягких условиях, часто на холоду и в растворителях, например воде, тетрахлорметане СCl4 и др.:

 

 

Аналогично протекает взаимодействие алкенов с бромоводородом:

 

 

Присоединение галогеноводородов к несимметричным алкенам теоретически может привести к двум продуктам:

 

 

Согласно правилу Марковникова, присоединение галогеноводородов к несимметричным алкенам протекает так, что водород направляется к атому углерода, который уже содержит большее число атомов водорода. В приведенной выше реакции продуктом будет 2‑иодпропан СН3СН(I)СН3.

По правилу Марковникова протекает и реакция гидратации, т. е. реакция присоединения воды в присутствии серной кислоты. Она происходит в две стадии:

а) вначале образуется алкилсерная кислота, т. е. H2SO4 присоединяется к алкену:

 

 

б) затем происходит ее необратимый гидролиз:

 

 

Алкены обесцвечивают раствор перманганата калия на холоду в нейтральной среде, при этом образуются гликоли (двухатомные спирты):

 

 

Алкены способны вступать в реакции полимеризации:

 

 

Качественные реакции на алкеныобесцвечивание бромной воды и раствора КMnO4 (уравнения реакций см. выше).

Алкадиены – непредельные углеводороды, в молекулах которых содержатся две связи С=С. Общая формула алкадиенов СnН2n‑2 (n ≥ 3), формула совпадает с таковой для алкинов.

Примеры:

 

 

Большое практическое значение имеют сопряженные диены, в молекулах которых связи С=С разделены одинарной связью С – С:

 

 

Дивинил и изопрен – традиционные названия.

Дивинил – бесцветный, легко сжижающийся (при ‑4,5 °C) газ, изопрен – низкокипящая (34,1 °C) жидкость.

Алкадиены вступают в те же реакции присоединения, что и алкены. Сопряженные диены имеют особые свойства, в частности, в реакциях присоединения; они образуют продукты 1,4‑присоединения с одной двойной связью посредине:

 

 

(далее возможно образование 1, 2, 3, 4‑тетрабромбутана).

Алкадиены способны полимеризоваться с образованием каучуков:

 

 

Полиметилбутадиеновый каучук – это полимер, существующий в природе (натуральный каучук), а полибутадиеновый каучук получен искусственно (С. В. Лебедев, 1932 г.) и называется синтетическим каучуком.

Получение: для алкенов в промышленности используют метод каталитического дегидрирования алканов:

 

 

В лаборатории алкены получают:

1) дегидратацией спиртов (отщепление воды от спиртов):

 

 

2) дегидрогалогенированиеж – отщеплением галогеноводорода от моногалогенопроизводного под действием спиртового раствора щелочи:

 

 

3) дегалогенированиеж – отщеплением галогенов от дигалогенопроизводных, в которых атомы галогена находятся у соседних атомов углерода:

 

 

Промышленное получение дивинила:

1) дегидрирование бутана:

 

 

2) способ Лебедева – одновременное отщепление воды и водорода от этанола на катализаторе (ZnO/Al2O3):

 

 

Алкены используются для органического синтеза, производства пластмасс, искусственного моторного топлива, диеновые углеводороды – исходное сырье в промышленном синтезе каучуков.

 

Алкины

 

Алкины – углеводороды с тройной связью C≡C в молекулах (непредельные углеводороды ряда ацетилена). Простейший представитель этого ряда – ацетилен С2Н2, общая формула алкинов CnH2n‑2 (при n ≥ 2).

Названия простейших алкинов:

С2Н2 – этин (традиционно: ацетилен)

С3Н4 – пропин (метилацетилен)

С4Н6 – бутин

Изомеры бутина:

 

 

Ацетилен, пропин и бутин‑1 – бесцветные газы при комнатной температуре, бутин‑2 – легкокипящая жидкость, обладает легким «эфирным» запахом.

В алкинах атомные орбитали углерода у тройной связи имеют sp‑гибридизацию (линейное строение). Наличие двух π‑связей обусловливает их химические свойства, в частности высокую способность к реакциям ступенчатого присоединения водорода, хлора, брома, галогеноводородов, воды:

а)

 

б)

в)

(присоединение НCl к хлорэтену происходит по правилу Марковникова; хлорэтен традиционно называют хлорвинилом или винилхлоридом);

г) реакция Кучерова (гидратация на катализаторе)

 

 

При циклизации ацетилена образуется бензол:

 

 

Упомянутый выше хлорвинил способен полимеризоваться:

 

 

Поливинилхлорид (ПВХ) – полимер, основа пластмассы, волокон и пленок, применяется в производстве труб, искусственной кожи, электроизоляции, пеноматериалов.

Качественные реакции:

1) на алкины любого строения – обесцвечивание раствора КMnO4, чаще всего происходит разрыв углеродной цепи по месту тройной связи (ср. с алкенами);

2) на алкины с концевой тройной связью – замещение концевого атома водорода на медь (I) с образованием ярко‑красного осадка:

 

 

Получение: в промышленности ацетилен ранее получали гидролизом дикарбида (ацетиленида) кальция:

 

 

(неприятный «карбидный» запах газа обусловлен примесями, главным образом фосфином РН3).

Современный способ – пиролиз (термическое разложение) метана:

 

 

В лаборатории для получения ацетилена и его гомологов используют взаимодействие дигалогенопроизводных алканов со щелочами в спиртовом растворе при нагревании:

 

 

(обязательное условие – атомы галогенов должны находиться при соседних атомах углерода). Эта реакция может проходить в одну стадию (как показано выше), но чаще – в две стадии:

а)

 

б)

 

Алкины, особенно ацетилен, используются как исходное сырье в химической промышленности для многих органических синтезов. Кроме того, ацетилен благодаря высокой теплотворной способности сгорания:

 

 

применяется для автогенной сварки и резки металлов.

 

Арены

 

Арены – это непредельные углеводороды, которые можно рассматривать как производные простейшего из них – бензола С6Н6. Общая формула углеводородов гомологического ряда бензола СnН2n‑6 (при n ≥ 6).

В молекуле бензола все атомы углерода находятся в sр2‑гибридизации, каждый атом углерода соединен в одной плоскости σ‑связями с двумя другими атомами углерода и одним атомом водорода. У атома углерода остается еще облако четвертого валентного электрона, расположенное перпендикулярно плоскости. Эти облака участвуют в образовании π‑связи, причем в молекуле образуются не три отдельные π‑связи (как думали раньше, см. формулу Кекуле, 1865 г.), а единая шестицентровая (С6) π‑связь (все атомы равноценны):

 

 

Формула Кекуле часто применяется в тех случаях, когда необходимо более наглядно представить протекание реакции с участием бензольного кольца С6; его изображение:

 

 

В обеих формулах атомы С кольца и не участвующие в реакции атомы Н опускаются (для краткости). Некоторые простейшие гомологи бензола:

 

 

Радикал бензола С6Н5 называется фенил, радикал толуола С6Н5СН2 бензил.

Бензол и его ближайшие гомологи – жидкости без цвета, но с характерным запахом, имеют широкий интервал жидкого состояния. Практически не растворяются в воде, но хорошо смешиваются между собой и с другими органическими растворителями. Пар бензола сильно ядовит.

Несмотря на формальную непредельность, бензол отличается высокой устойчивостью к нагреванию и окислению (в гомологах бензола окисляется только боковая цепь). Характерными для бензола являются реакции замещения:

а) нитрование в присутствии концентрированной серной кислоты на холороматическим» характером.

В производных бензола атом или группа, заместившие водород кольца, и само бензольное кольцо влияют друг на друга. По характеру влияния различают:

1) заместители I рода – CI, Br, I, СН3, СnН2n+1, ОН и NH2. Они облегчают реакции дальнейшего замещения и направляют второй заместитель по отношению к себе в орто‑ (о‑, или 2‑) положение и в пара‑ (п‑, или 4‑) положение [для запоминания: орто – около, пара – против], например:

 

 

2) заместители II рода – NO2, С(Н)O, СООН и CN. Они затрудняют реакции дальнейшего замещения и направляют второй заместитель в мета‑ (м‑, или 3‑) положение, например:

 

 

Очевидно, что существуют два орто‑положения рядом с первым заместителем X, два мета‑положения, отделенные от первого заместителя одним углеродом кольца, и лишь одно пара‑положение через два атома углерода бензольного кольца:

 

 

Ранее уже отмечалось, что бензол стоек к окислению даже при действии сильных окислителей. Гомологи бензола с одним боковым радикалом вступают в реакции окисления только за счет радикала; при этом, какова бы ни была его длина, отщепляется вся цепь, кроме ближайшего к кольцу атома углерода (он создает карбоксильную группу):

 

 

В жестких условиях бензол вступает в реакции присоединения:

 

 

Стирол C6H5–CH=CH2, как этилен, легко полимеризуется:

 

 

Полистирол – термопластичная пластмасса (термопласт), прозрачный материал, размягчающийся при температуре выше 80 °C. Используется для изготовления изоляции электропроводов, посуды разового употребления, упаковочной массы (пенопласт).

Получение аренов – ароматизация алифатических и алициклических углеводородов, содержащихся в нефтяных или буроугольных бензиновых фракциях:

1) дегидрирование:

 

 

2) дегидроциклизация:

 

 

3) тримеризация ацетилена (устаревший способ):

 

 

Бензол и его гомологи используются в качестве малополярных растворителей (для каучука, лаковых смол, полимеров), сырье в органическом синтезе.

 



href="page-9-ref-37821.php">7
  • 8
  • 9
  • 101112
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • Далее ⇒