Лекція 4. Техногенні небезпеки та їх наслідки

 

Техногенні небезпеки

Механічні небезпеки

Механічні коливання

Електромагнитні поля (ЕМП)

Іонізуючі випромінювання

Електробезпека

Вибухи і пожежі

Механічні небезбеки

Під механічними небезпеками розуміють такі небажані впливи на людину, походження яких обумовлене силами гравітації або кінетичною енергією тіл.

Механічні небезпеки створюються об’єктами природного та штучного походження, що падають, рухаються та обертаються. Наприклад, механічними небезпеками природної властивості є обвали та каменепади в горах, снігові лавини, селі, град та ін. Носіями механічних небезпек штучного походження є машини та механізми, різне обладнання, транспорт, будівлі та споруди та багато інших об’єктів, що діють в силу різних обставин на людину своєю масою, кінетичною енергією або іншими властивостями.

В результаті дії механічних небезпек можливі тілесні пошкод­ження різної важкості. Величину механічних небезпек можна оцінити по-різному. Наприклад, за кількістю руху mv, кінетичною енергією 0,5 mv2, запасеною енергією mgh (m, v – маса та швидкість тіла відповідно, h – висота, g – прискорення вільного падіння).

Об’єкти, що являють механічну небезпеку, можна поділити за наявністю енергії на два класи: енергетичні та потенційні. Енергетичні об’єкти діють на людину, тому що мають той чи інший енергетичний потенціал. Потенційні механічні небезпеки позбавлені енергії. Травмування у цьому випадку може статися за рахунок енергії самої людини. Наприклад, колючі, ріжучі предмети (цвяхи, що стирчат, задирки, леза тощо) являють собою небезпеку при випадковому контакті людини з ними. До потенційних небезпек відносяться також такі небезпеки, як нерівні та слизькі поверхні, по яким рухається людина, висота можливого падіння, відкриті люки та ін. Перераховані безенергетичні небезпеки є причиною численних травм (переломів, вивихів, струсів головного мозку, падінь, забитих місць).

Механічні небезпеки поширені у всіх видах діяльності людей усіх вікових груп: серед дітей, школярів, домогосподарок, людей старшого віку в спортивних іграх, побутовій та виробничій діяльності.

Захист від механічних небезпек здійснюється різними способами, характер яких залежить від конкретних умов діяльності. Добре розроблені також способи надання до лікарняної допомоги та лікування наслідків механічних небезпек.

Механічні коливаня

До механічних коливань відносяться вібрація, шум, інфразвук, ультразвук, гіперзвук.

Загальною властивістю цих фізичних процесів є те, що вони пов’язані з перенесенням енергії. За певної величини та частоти ця енергія може справляти несприятливу дію на людину: викликати різні захворювання, створювати додаткові небезпеки. Тому необхідно вивчити властивості цих небезпечних явищ, вміти вимірювати параметри коливань і знати методи захисту від них.

Вібрація це коливання твердих тіл, частин апаратів, машин, устаткування, споруд, що сприймаються організмом людини як струс.

Причиною вібрації є неурівноважені силові дії. Вібрація знаходить корисне застосування у медицині (вібраційний масаж) та у техніці (вібратори). Однак тривалий вплив вібрації на людину є небезпечним. Вібрація при певних умовах є небезпечною для машин та механізмів, тому що може викликати їх руйнування.

Часто вібрації супроводжуються почутим шумом.

Вібрація впливає на:

· центральну нервову систему

· шлунково-кишковий тракт

· вестибулярний апарат

· викликає запаморочення, оніміння кінцівок

· захворювання суглобів

Тривалий вплив вібрації викликає фахове захворювання – вібра­ційну хворобу.

Розрізняють загальну і локальну (місцеву) вібрації. Локальна вібрація зумов­лена коливаннями інструмента й устаткування, що передаються до окремих частин тіла.

Загальна вібрація викликає струс всього організму, місцева впливає на окремі частини тіла. Інколи працюючий може одночасно піддаватися загальній та місцевій вібрації (комбінована вібрація). Вібрація порушує діяльність серцево-судинної та нервової систем, викликає вібраційну хворобу. Особливо небезпечна вібрація на резонансних та навколо резонансних частотах (6-9 Гц), оскільки вона збігається з власною частотою коливань внутрішніх органів людини. В результаті цього може виникнути резонанс, це призводить до переміщень і механічних ушкоджень внутрішніх ор­ганів. Резонансна частота серця, живота і грудної клітки — 5 Гц, голови — 20 Гц, центральної нервової системи — 250 Гц. Частоти сидячих людей становлять від 3 до 8 Гц.

Основними параметрами, що характеризують вібрацію, є: час­тота/(Гц); амп­лі­туда зсуву А (м) (розмір найбільшого відхилення точки, що коливається, від положення рівноваги); коливальна швид­кість v (м/с); коливальне прискорення а (м/с2).

У виробничих умовах припустимі рівні шуму і вібрації регламен­туються відповідними нормативними документами.

Зниження впливу шуму і вібрації на організм людини досягається такими методами:

• зменшенням шуму і вібрації у джерелах їхнього утворення;

• ізоляцією джерел шуму і вібрації засобами звуко- і віброізоляції;

• звуко- і вібропоглинання;

• архітектурно-планувальними рішеннями, що передбачають раціо­нальне розміщення технологічного устаткування, машин і механізмів;

• акустичним опрацюванням помешкань; застосуванням засо­бів індивіду­аль­ного захисту.

Шум. Будь-який небажаний звук називають шумом. Шум шкідливий для здоров’я, зменшує працездатність, підвищує рівень небезпеки. Тому необхідно передбачати заходи захисту від шуму. А для цього потрібно володіти відповідними знаннями.

Як правило, шум нас дратує: заважає працювати, відпочивати, думати. Але шум може впливати і позитивно. Такий вплив на люди­ну чинить, наприклад, шелест листя дерев, помірний стукіт дощо­вих крапель, рокіт морського прибою. Позитивний вплив спокійної приємної музики відомий з давніх часів. Тому різноманітні оздоровчі процедури супроводжуються спокійною симфонічною або блюзовою музикою.

Нерідко шум несе важливу інформацію. Автомобіліст уважно прислухається до звуків, які видає мотор, шасі, інші частини автомо­біля, що рухається, бо будь-який сторонній шум може попередити аварію. Також за допомогою шуму, спричиненого рухом кораблів та підводних човнів, їх виявляють і пеленгують. Шум відіграє велику роль в акустиці, радіотехніці, радіоастрономії і навіть медицині.

Що таке шум і як він впливає на організм людини?

Шум — це сукупність звуків різноманітної частоти та інтенсив­ності, що виникають у результаті коливального руху частинок у пруж­них середовищах (твердих, рідких, газоподібних).

Шумове забруднення навколишнього середовища увесь час зро­стає. Особливо це стосується великих міст. Опитування жителів міст довело, що шум турбує більше 50% опитаних. Причому в останні десятиліття рівень шуму зріс у 10—15 разів.

Шум — один з видів звуку, який називають "небажаним" зву­ком. Як відомо з фізики, процес поширення коливального руху в середовищі називається звуковою хвилею, а область середовища, в якій поширюються звукові хвилі — звуковим полем. Розрізняють такі види шуму:

· ударний (штампування, кування);

· механічний (тертя, биття);

· аеродинамічний (в апаратах і трубопроводах при великих швид­костях руху повітря).

Фізичні характеристики шуму. Шум - це механічні коливання, що поширюються у твердому, рідкому та газоподібному середовищі. Частки середовища при цьому коливаються відносно положення рівноваги. Звук поширюється у повітрі зі швидкістю 344 м/с.

Основними фізичними характеристиками звуку є: частота/(Гц), звуковий тиск Р(Па), інтенсивність або сила звуку І (Вт/м2), звуко­ва потужність w (Вт). Швидкість поширення звукових хвиль в атмо­сфері при 20 °С становить 344 м/с. Органи слуху людини сприймають звукові коливання в інтервалі час­тот від 16 до 20 000 Гц. Коливання з частотою нижче 16 Гц (інфразвуки) і з частотою вище 20 000 Гц (ультразвуки) не сприймаються органами слуху людини.

Слуховий апарат людини найбільш чутливий до звуків високої частоти. Тому для оцінки шуму необхідно знати його частоту, яка вимірюється в герцах (Гц), тобто числом коливань на секунду. Вухо людини сприймає звукові коливання у межах 16¼16000 Гц. Нижче 16 Гц та вище 16000 Гц знаходяться відповідно області нечутних людиною інфразвуків та ультразвуків. Залежність рівнів від частоти називається спектром шуму. Спектри шуму (як і вібрації) бувають дискретними, суцільними та змішаними. У суцільних спектрів інтервали між частотними складовими безкінечно малі.

Мінімальна інтенсивність звуку, яку людина відчуває, називаєть­ся порогом чутливості.

У різних людей він різний, і тому умовно за поріг чутливості беруть звуковий тиск, який дорівнює 2×10-5 Н/м2 (ньютон на метр квадратний) при стандартній частоті 1000 Гц. При цій частоті поріг чутливості I0 = 10-12 Вт/м2, а відповідний йому тиск Р0 = 2×10-5 Па. Максимальна інтенсивність звуку, при якій вухо починає відчувати болючі відчуття, називається порогом болісного відчуття, дорівнює 102 Вт/м2, а відповідний їй звуковий тиск Р = 2×102 Па.

Зміни інтенсивності звуку і звукового тиску, які чує людина, ве­личезні і становлять відповідно 1014 і 107 разів, тому оперувати таки­ми великими числами незручно. Для оцінки шуму прийнято вимі­рювати його інтенсивність і звуковий тиск не абсолютними фізич­ними величинами, а логарифмами відношень цих величин до умов­ного нульового рівня, що відповідає порогові чутливості стандарт­ного тону частотою 1000 Гц. Ці логарифми відношень називають рівнями інтенсивності і звукового тиску і виражають в белах (Б). Одиниця виміру "бел" названа на честь винахідника телефону А. Белла (1847—1922 pp.). Оскільки орган слуху людини спромож­ний розрізняти зміни рівня інтенсивності звуку на 0,1 Б, то для практичного використання зручнішою є одиниця в 10 разів менша — децибел (дБ).

Треба пам'ятати, що бел – це логарифм відношення двох од­нойменних фізичних величин, і тоді не буде виникати помилок при порівнянні різноманітних звуків за їх інтенсивністю (рівнем). Наприклад, якщо тихий шелест листя оцінюється в 1 дБ, а голос­на розмова в 6,5 дБ, то звідси не випливає, що промова перевищує за гучністю шелест листя у 6,5 разів. Відповідно до Бела одер­жуємо, що промова "голосніша" за шелест листя у 316 000 разів (1065/10' = 105-5 = 316000). Останнє є наочною ілюстрацією закону Вебера-Фехнера.

Використання логарифмічної шкали для вимірювання шуму до­зволяє вкладати великий діапазон значень /в порівняно невеликий інтервал розмірів від 0 до 140 дБ.

Зменшення рівня шуму поліпшує самопочуття людини і підви­щує продуктивність праці. З шумом необхідно боротися як на вироб­ництві, так і в побуті. Уміння дотримуватися тиші — показник куль­тури людини і ії доброзичливого ставлення до оточуючих. Тиша потрібна людям так само, як сонце і свіже повітря.

На практиці, для боротьби з шумом використовуються октавні смуги, тобто f2/f1 =2. Використовується такий ряд середньо-геометричних октавних смуг: 63, 125, 250, 500, 2000, 4000, 8000 Гц. Спектри показуються у вигляді таблиць або графіків.

Методи боротьби з шумом.Завданнями акустичного розрахунку є:

1. визначення рівня звукового тиску в розрахунковій точці, коли відоме джерело шуму та його шумові характеристики;

2. визначення величини зменшення шуму.

3. розробка заходів із зменшення шуму до допустимої величини.

Для зменшення шуму можуть бути застосовані наступні методи:

1. зменшення шуму в джерелі;

2. зміна спрямованості випромінювання;

3. раціональне планування підприємств та цехів, акустична обробка приміщень;

4. зменшення шуму на шляху його поширення;

5. засоби індивідуального захисту від шуму.

Вимірювання шуму. Вимірювання шуму виконують з метою визначення рівнів звукових тисків на робочих місцях та відповідності їх санітарним нормам, а також для розробки та оцінки ефективності різних заходів з глушіння шуму.

Основним приладом для вимірювання шуму є шумомір. У шумомірі звук, що сприймається мікрофоном, перетворюється у електричні коливання, які підсилюються, потім проходять через фільтри корекції та випрямляч і реєструються приладом зі стрілкою.

Діапазон вимірюваних сумарних рівнів шуму звичайно складає 30-130 дБ за частотних меж, що дорівнюють 5–8000 Гц.

Шумоміри мають перемикач, що дозволяє виконувати виміри за трьома шкалами: А, В, С (або за лінійною шкалою).

У шумомірах використовують електродинамічні та конденсаторні мікрофони.

Для визначення спектрів шуму шумомір підключають до фільтрів та аналізаторів.

У ряді випадків шум записується на магнітофон (через шумомір) а потім в лабораторних умовах аналізується.

Вимірювання шуму на робочих місця промислових підприємств виконують на рівні звуку 2/3 включеного працюючого обладнання.

У теперішній час для вимірювань шуму використовують вітчизняні шумоміри в комплекті з октавними фільтрами.

Із закордонних приладів добрі характеристики мають акустичні комплекти фірм «RFT» та «Брюль і К’єр».

Інфразвук. Область коливань, нечутна для людини. Звичайно верхньою границею інфразвукової області вважають частоти 16–25 Гц. Нижня границя інфразвуку невизначена.

Інфразвук виникає в атмосфері, в лісі, на морі (так званий голос моря). Джерелом інфразвуку є грім, вибухи, гарматні постріли, землетруси.

Для інфразвуку характерне мале поглинання. Тому інфразвукові хвилі у повітрі, воді та в земній корі можуть поширюватися на дуже великі відстані. Ця властивість інфразвуку використовується як передвісник стихійних лих, для дослідження властивостей атмосфери та водяного середовища води.

Захист від інфразвуку являє собою серйозну проблему.

Ультразвук знаходить широке застосування у металообробній промисло­вості, машинобудуванні, металургії тощо. Частота застосовуваного ультразвуку від 20 кГц до 1 мГц, потужності – до кількох кіловат.

Ультразвук справляє шкідливий вплив на організм людини. У працюючих з ультразвуковими установками нерідко спостерігаються функціональні порушення нервової системи, зміни тиску, складу та властивості крові. Частішають скарги на головні болі, швидку втомлюваність, втрату слухової чутливості.

Ультразвук може діяти на людину як через повітряне середовище, так і через рідке або тверде (контактна дія на руки).

Рівні звукових тисків в діапазоні частот від 11 до 20 кГц не повинні перевищувати відповідно 75–110 дБ, а загальний рівень звукового тиску в діапазоні частот 20–100 кГц не повинен перевищувати 110 дБ.

Захист від дії ультразвуку при повітряному опроміненні може бути забезпечений:

¨ шляхом використання в обладнанні більш високих частот, для яких допустимі рівні звукового тиску вищі;

¨ шляхом застосування обладнання, що випромінює ультразвук, у звукоізолюючому виконанні (типу кожухів). Такі кожухи виготовляють з листової сталі або дюралюмінію (товщиною 1 мм) з обклеюванням гумою або руберойдом, а також із гетинаксу (товщиною 5 мм). Еластичні кожухи можуть бути виго­товлені з трьох шарів гуми загальною товщиною 3-5 мм. Застосування кожухів, наприклад, в установках для очищення деталей, дає зменшення рівня ультразвуку на 20-30 дБ у чутному діапазоні частот та 60-80 дБ - в ультразвуковому;

¨ шляхом улаштування екранів, у тому числі прозорих, між обладнанням та працюючим;

¨ шляхом розташування ультразвукових установок у спеціальних приміщеннях, загородках або кабінах, якщо перерахованими вища заходами неможливо отримати необхідний ефект.

Захист від дії ультразвуку при контактному опроміненні полягає в повному виключенні безпосереднього доторкання працюючих до інструмента, рідини та виробів, оскільки такий вплив найбільш шкідливий.

Іонізуючі випромінювання

Іонізуючим випромінюванням називається випромінювання, взаємодія якого з речовиною призводить до утворення у цій речовині іонів різного знаку. Іонізуюче випромінювання складається із заряджених та незаряджених частинок, до яких відносяться також фотони. Енергію частинок іонізуючого випромінювання вимірюють у позасистемних одиницях – електрон-вольтах, еВ. 1 еВ = 1,6×10-19 Дж.

Розрізняють корпускулярне та фотонне іонізуюче випромі­ню­вання.

Корпускулярне іонізуюче випромінювання – потік елементарних частинок з масою спокою, що відрізняється від нуля, які утворюються при радіоактивному розпаді, ядерних перетвореннях, або генеруються на прискорювачах. До нього відносяться: a- та b-частинки, нейтрони (n), протони (р) тощо.

a-випромінювання – це потік частинок, які є ядрами атома Гелію і мають дві одиниці заряду. Енергія a-частинок, що випромінюється різними радіонуклідами, лежить у межах 2-8 МеВ. При цьому всі ядра даного радіонукліда випускають a - частинки, що мають одну й ту саму енергію.

b-випромінювання – це потік електронів або позитронів. Під час розпаду ядер b-активного радіонукліда, на відміну від a-розпаду, різні ядра даного радіонукліда випромінюють b-частинки різної енергії, тому енергетичний спектр b-частинок неперервний. Середня енергія b-спектра складає приблизно 0,3 Еmax. Максимальна енергія b-части­нок відомих у нинішній час радіонуклідів може досягати 3,0-3,5 МеВ.

Нейтрони (нейтронне випромінювання) – нейтральні елементарні частинки. Оскільки нейтрони не мають електричного заряду, під час проходження крізьчерез речовину вони взаємодіють тільки з ядрами атомів. У результаті цих процесів утворюються або заряджені частинки (ядра віддачі, протони, дейтрони), або g-випромінювання, що викликає іонізацію. За характером взаємодії із середо­ви­щем, що залежить від рівня енергії нейтронів, вони умовно поділені на 4 групи:

Фотонне випромінювання - потік електромагнітних частинок, які поширюються у вакуумі із постійною швидкістю 300000 км/с. До нього відноситься g-випромінювання, характеристичне, гальмівне та рентгенівське випромінювання.

Маючи одну й ту саму природу, ці види електромагнітних випромінювань розрізняються за умовами утворення, а також властивостями: довжиною хвилі та енергією. Так, g-випромінювання випромінюється під час ядерних перетворень або при анігіляції частинок.

Характеристичне випромінювання – фотонне випромінювання із дискретним спектром, що випромінюється при зміні енергетичного стану атома, яка обумовлена перебудовою внутрішніх електронних оболонок.

Гальмівне випромінювання – пов’язане із зміною кінетичної енергії заряджених частинок, має неперервний спектр і виникає у середовищі, яке оточує джерело b-випромінювання, у рентгенівських трубках, у прискорювачах електронів тощо.

Рентгенівське випромінювання – сукупність гальмівного та характери­стичного випромінювань, діапазон енергії фотонів яких складає 1 кеВ - 1 МеВ.

Випромінювання характеризуються за їх іонізуючою та проникною здатністю. Іонізуюча здатність випромінювання визначається питомою іонізацією, тобто числом пар іонів, створюваних частинкою в одиниці об’єму, маси середовища або на одиниці довжини шляху. Випромінювання різних видів мають різну іонізуючу здатність.

Проникна здатність випромінювань визначається величиною пробігу. Пробігом називається шлях, який проходить частинка у речовині до її повної зупинки, обумовленої тим або іншим видом взаємодії.

a-частинки володіють найбільшою іонізуючою здатністю. Їх питома іонізація змінюється від 25 до 60 тис. пар іонів на 1 см шляху в повітрі. Довжина пробігу цих частинок в повітрі складає кілька сантиметрів, а у м’якій біологічній тканині – кілька десятків мікрон.

b-випромінювання має суттєво меншу іонізуючу здатність і більшу проникну здатність. Середня величина питомої іонізації в повітрі складає близько 100 пар іонів на 1 см шляху, а максимальний пробіг досягає кількох метрів при великих енергіях.

Найменшою іонізуючою здатністю та найбільшою проникною здатністю володіють фотонні випромінювання. У всіх процесах взаємодії електромагнітного випромінювання із середовищем частина енергії перетворюється в кінетичну енергію вторинних електронів, які, проходячи крізь речовину, виконують іонізацію. Проходження фотонного випромінювання крізь речовину, взагалі не може бути охарактеризоване поняттям пробігу. Послаблення потоку електро­магнітного випромінювання у речовині підлягає експонент­ціальному закону і характеризується коефіцієнтом послаблення m, який залежить від енергії випромінювання та властивостей речовини. Особливість експоненціальних кривих полягає в тому, що вони не перетинаються з віссю абсцис. Це означає, що якою б не була товщина шару речовини, вона не може повністю поглинути потік фотонного випромінювання, а може тільки послабити його інтенсивність у будь-яку кількість разів. У цьому суттєва відмінність характеру послаблення фотонного випромінювання від послаблення заряджених частинок, для яких існує мінімальна товщина шару речовини-поглинача (пробіг), де відбувається повне поглинання потоку заряджених частинок.

Відкриття іонізуючого випромінювання пов’язане з іменем французького вченого Анрі Беккереля. У 1896 р. він знайшов на фотографічних пластинках сліди якихось випромінювань, залишених мінералом, який містив уран, а у 1898 р. Марія Кюрі та її чоловік П’єр Кюрі встановили, що після випромінювань уран спонтанно послідовно перетворюється в інші елементи. Цей процес перетворення одних елементів в інші, що супроводжується іоніза­ційним випромінюванням, Марія Кюрі назвала радіоактивністю. Так була відкрита природна радіоактивність, яку мають елементи із нестабільними ядрами. В 1934 році Ірен та Фредерік Жюліо-Кюрі показали, що діючи нейтронами на ядра стабільних елементів, можна отримати ізотопи із штучною радіоактивністю.

Таким чином розрізняють природні та технічні джерела іонізуючого випромінювання. До природних відносяться космічні, а також земні джерела, що створюють природне опромінювання (природний фон). До технічних відносяться джерела, спеціально створені для корисного застосування випромінювання або такі, що є побічним продуктом діяльності.

Біологічна дія іонізуючих випромінювань

Під дією іонізуючого випромінювання на організм людини у тканинах можуть відбуватися складні фізичні та біологічні процеси. В результаті іонізації живої тканини відбувається розрив молекулярних зв’язків і зміна хімічної структури різних сполук, що в свою чергу призводить до загибелі клітин.

Ще більш суттєву роль у формуванні біологічних наслідків відіграють продукти радіолізу води, яка складає 60-70 % маси біологічної тканини. Під дією іонізуючого випромінювання на воду утворюються вільні радикали Н та ОН, а у присутності кисню також вільний радикал гідропероксиду (НО2) та пероксиду водню (Н2О2), що є сильними окисниками. Продукти радіолізу вступають у хімічні реакції з молекулами тканин, утворюючи сполуки, не властиві здоровому організму. Це призводить до порушення окремих функцій або систем, а також життєдіяльності організму взагалі.

Інтенсивність хімічних реакцій, індукованих вільними радикалами, підвищується і в них залучаються багато сотень і тисяч молекул, що не зазнали опромінювання. В цьому полягає специфіка дії іонізуючого випромінювання на біологічні об’єкти, тобто ефект, створюваний випромінюванням обумовлений не стільки кількістю поглинутої енергії в опроміненому об’єкті, скільки тою формою, в якій ця енергія передається. Ніякий інший вид енергії (теплової, електричної тощо), поглинутої біологічним об’єктом у тій самій кількості, не призводить до таких змін, які викликають іонізуючі випромінювання.

Порушення біологічних процесів можуть бути або оборотними, коли нормальна робота клітин опроміненої тканини повністю відновлюється, або необоротними, що ведуть до ураження окремих органів або всього організму та виникнення променевої хвороби.

Розрізняють дві форми променевої хвороби – гостру та хронічну.

Г о с т р а форма виникає в результаті опромінення великими дозами за короткий інтервал часу. При дозах близько порядку тисяч рад ураження організму може бути миттєвим («смерть під променем»). Гостра променева хвороба може виникнути і під час надходження усередину організму великих кількостей радіонуклідів.

Х р о н і ч н і у р а ж е н н я розвиваються в результаті систематичного опромінення дозами, що перевищують гранично допустимі (ГДД). Зміни у стані здоров’я називаються соматичними ефектами, якщо вони проявляються безпосередньо в опроміненої людини, та спадковими, якщо вони проявляються у його потомства.

Для вирішення питань радіаційної безпеки у першу чергу становлять інтерес ефекти, що спостерігаються при «малих дозах» – порядку кількох сантизивертів на годину та нижче, які реально зустрічаються під час практичного використання атомної енергії. У нормах радіаційної безпеки, за одиницю часу, як правило, використовується рік, і як наслідок цього, поняття річної дози випромінювання.

Дуже важливим тут є те, що згідно сучасним уявленням вихід несприятливих ефектів у діапазоні «малих доз», що зустрічаються у звичайних умовах, мало залежить від потужності дози. Це означає, що ефект визначається передусім сумарною накопиченою дозою незалежно від того, отримана вона за 1 день, за 1 с або за 50 років. Таким чином, оцінюючи ефекти хронічного опромінювання, потрібно мати на увазі, що ці ефекти накопичуються в організмі протягом тривалого часу.

Ще в 1899 р. було встановлено ефект пригнічення ракових клітин іонізуючим випромінюванням. Надалі корисне застосування радіоактивних речовин у різних сферах діяльності стрімко розвивалося. У 1954 р. у Радянському Союзі була запущена перша в світі АЕС. На жаль, дослідження атома призвели до створення та застосування в 1945 р. атомної бомби у Хіросімі та Нагасакі. 26 квітня 1986 р. на ЧАЄС сталася дуже важка аварія, яка призвела до загибелі та захворювання людей, зараження значної території.

Дослідники випромінювань першими стикнулися з їх небезпечними властивостями. А. Беккерель отримав опік шкіри. Марія Кюрі, як припускають, померла від раку крові. Не менше ніж 336 осіб, що працювали з радіоактивними матеріалами, померли від переопромінення. Відмовитися від застосування радіоактивних речовин у науці, медицині, техніці, сільському господарстві неможливо через об’єктивні причини. Зостається один шлях – забезпечити радіаційну безпеку, тобто такий стан середовища життя, за якого з певною імовірністю виключене радіаційне ураження людини.

Джерела забруднення

Розрізняють природні і створені людиною джерела випромінювання. Основну частину випромінювання населення Землі отримує від природних джерел. Природні джерела космічного та земного походження створюють природний радіаційний фон (ПРФ). На території України природний фон створює потужність експозиційної дози від 40-200 мбер/рік. Випромінювання, обумовлене розсіяними в біосфері штучними радіонуклідами, породжує штучний радіаційний фон (ШРФ), який у нинішній час загалом на Земній кулі додає до ПРФ лише 1–3 %.

Поєднання ПРФ та ШРФ утворює радіаційний фон (РФ), який діє на все населення земної кулі, маючи відносно постійний рівень. Космічні промені являють потік протонів та a-частинок, що приходять на Землю із Світового простору. До природних джерел земного походження відносяться – випромінювання радіоактивних речовин, що містяться у породах, грунті, будівельних матеріалах, повітрі, воді.

По відношенню до людини джерела опромінювання можуть знаходитися зовні організму і опромінювати його. У цьому випадку йдеться про зовнішнє опромінення. Радіоактивні речовини можуть опинитися у повітрі, яким дихає людина, у їжі, у воді і попасти всередину організму. Це – внутрішнє опромінювання. Середня ефективна еквівалентна доза, отримувана людиною від зовнішнього опромінювання за рік від космічних променів, складає 0,3 мілізіверта, від джерел земного походження – 0,35 мЗв.

У середньому приблизно 2/3 ефективної еквівалентної дози опромінювання, яку людина отримує від природних джерел радіації, надходить від радіоактивних речовин, які надійшли в організм з їжею, водою, повітрям.

Найвагомішим з усіх природних джерел радіації є невидимий важкий газ радон (у 7,5 раза важчий за повітря), який не має смаку та запаху. Радон і продукти його розпаду випромінюють приблизно 3/4 річної індивідуальної ефективної еквівалентної дози опромінювання, отримуваної населенням від земних джерел, і приблизно за половину цієї дози від усіх джерел радіації. У будівлі радон надходить із природним газом (3 Кбк/добу), з водою 94), із зовнішнім повітрям (10), із будматеріалів та грунту під будівлею ( 60 Кбк/добу).

За останні десятиріччя людина створила більше тисячі штучних раді онук­лідів і навчилася застосовувати їх з різною метою. Значення індивідуальних доз, отримуваних людьми від штучних джерел, сильно різняться.

Нормування радіаційної безпеки

Питання радіаційної безпеки регламентуються законом «Про радіаційну безпеку населення», нормами радіаційної безпеки (НРБ-96) та іншими правилами та постановами.

Усі громадяни і особи без громадянства, що проживають на території України мають право на радіаційну безпеку. Це право забезпечується за рахунок проведення комплексу заходів щодо запобігання радіаційної дії на організм людини іонізуючого випромінювання вище встановлених норм та правил, нормативів, виконання громадянами й організаціями, що здійснюють діяльність із використанням джерел іонізуючого випромінювання, вимог до забезпечення радіаційної безпеки.

Вимоги НРБ-96 є обов’язковими для всіх юридичних осіб. Ці норми є основним документом, що регламентує вимоги радіаційної безпеки і застосовується за всіх умов дії на людину радіації штучного та природного походження.

У НРБ-96 приведені терміни та визначення. Так, в нормах сказано, що радіаційний ризик – це імовірність того, що у людини в результаті опромінювання виникає який-небудь конкретний шкідливий ефект.

Норми встановлюють наступні категорії осіб, що зазнають опромінення: персонал та все населення. Персонал - особи, що працюють з технічними джерелами ( група А або ті особи, що перебувають за умовами роботи у сфері дії технічних джерел (груба Б). Границя індивідуального ризику для техногенного опромінювання осіб із персоналу приймається такою, що дорівнює 1 × 10-3 на рік, для населення 5,0×10-5 на рік. Рівень ризику, яким можна знехтувати, приймається таким, що дорівнює 10-6 на рік.

Для категорій осіб, що зазнають опромінювання, встановлюються три класи нормативів.

¨ допустимі рівні монофакторної (для одного радіонукліда або одного виду зовнішнього випромінювання, шляхи надходження) дії, що є похідними від основних границь дози: границі річного надходження, допустимі середньорічні об’ємні активності (ДОА) та питомі активності (ДПА) тощо;

¨ контрольні рівні (дози та рівні). Контрольні рівні встановлюються адміністрацією установи за узгодженням із органами Державного санітарного епідеміологічного нагляду. Їх чисельні значення повинні враховувати досягнутий в установі рівень радіаційної безпеки та забезпечувати умови, за яких радіаційна дія буде нижча допустимої.

Основні границі дози опромінення осіб із персоналу та населення не включають дози від природних, медичних джерел іонізуючого випромінювання та дозу, отриману внаслідок радіаційних аварій. На ці види опромінювання встановлюються спеціальні обмеження.

При підрахунку внеску у загальне (зовнішнє та внутрішнє) опромінювання від надходження в організм радіонуклідів береться сума добутків надходжень кожного радіонукліда за рік на його коефіцієнт дози. Річна ефективна доза опромінення дорівнює сумі ефективної дози зовнішнього опромінювання, накопиченої за календарний рік, та очікуваної ефективної дози внутрішнього опромінювання, що обумовлена надходженням в організм радіонуклідів за цей самий період. Інтервал часу для визначення величини очікуваної ефективної дози встановлюється таким, що дорівнює 50 років для осіб з персоналу та 70 років - для осіб з населення.

Для кожної категорії осіб, які зазнають опромінювання, допустиме річне надходження радіонукліда розраховується шляхом поділу річної границі дози на відповідний коефіцієнт дози.

Захист від випромінювань

Захист часом полягає в тому, щоб обмежити час t перебування в умовах опромінення та не допустити перевищення допустимої дози.

Захист відстанню грунтується на наступних фізичних засадах. Випромі­ню­вання точкового або локалізованого джерела поширюється у всі сторони рівно­мі­р­но, тобто є ізотропним. Звідси випливає, що інтенсивність випромінювання зменшується із збільшенням відстані R до джерела за законом обернених квадратів.

Принцип екранування або поглинання грунтується на використанні процесів взаємодії фотонів із речовиною. Якщо задані тривалість роботи, активність джерела та відстань до нього, а потужність дози Р0 на робочому місці оператора виявляється вище допустимої РД, немає іншого шляху, крім того, як зменшити значення Р0 у необхідне число разів: n = Р0Д, помістивши між джерелом випромінювання та оператором захист із речовини, що поглинає радіацію.

Слід відзначити, що організм беззахисний у полі випромінювання. Існують механізми пострадіаційного відновлення живих структур. Тому до певних меж опромінення не викликає шкідливих змін у біологічних тканинах. Якщо допустимі границі перевищені, то необхідна підтримка організму (посилене харчування, вітаміни, фізична культура, сауна тощо). При змінах у кровотворенні застосовують переливання крові. При дозах, що загрожують життю (600 – 1000 бер) використовують пересадку кісткового мозку. При внутрішньому переопроміненні для поглинання або зв’язування радіонуклідів у сполуки, що перешкоджають їх відкладанню в органах людини, вводять сорбенти або речовини, які утворюють комплекси.

До технічних засобів захисту від іонізуючих випромінювань відносяться екрани різних конструкцій. У якості ЗІЗ застосовують халати, комбінезони, плівковий одяг, рукавиці, пневматичні костюми, респіратори, протигази. Для захисту очей застосовуються окуляри. Весь персонал повинен мати індивідуальні дозиметри.

Електромагнитні поля (ЕМП)

Природними джерелами електромагнітних полів та випромінювань є передусім: атмосферна електрика, радіовипромінювання сонця та галактик, електричне та магнітне поле Землі. Всі промислові та побутові електричні та радіоустановки є джерелами штучних полів та випромінювань, але різної інтенсивності. Перерахуємо найбільш суттєві джерела цих полів.

Електростатичні поля виникають при роботі з матеріалами та виробами, що легко електризуються, а також при експлуатації високовольтних установок постійного струму. Джерелами постійних та магнітних полів є: електромагніти, соленоїди, магнітопроводи в електричних машинах та апаратах, литі та металокерамічні магніти, використовувані в радіотехніці.

Джерелами електричних полів промислової частоти (50 Гц) є: лінії електропередач, відкриті розподільні пристрої, що вмикають комутаційні апарати, пристрої захисту та автоматики, вимірювальні прилади, збірні, з’єднувальні шини, допоміжні пристрої, а також всі високовольтні установки промислової частоти. Магнітні поля промислової частоти виникають навколо будь-яких електроустановок і проводів струму. Чим більший струм, тим вища інтенсивність магнітного поля.

Джерелами електромагнітних випромінювань радіочастот є поту­жні радіос­танції, антени, генератори надвисоких частот, установки індукційного та діалект­ри­чного нагрівання, радари, вимірювальні та контролюючі прилади, дослідницькі установки, високочастотні прилади та пристрої в медицині та в побуті.

Джерелом електростатичного поля та електромагнітних випромі­ню­вань у широкому діапазоні частот (над- та інфранизькочастотному, радіочастотному, інфрачервоному, видимому, ультрафіолетовому, рентгенівському) є персональні електронно-обчислювальні машини (ПЕОМ) та відео-дисплейні термінали (ВДТ) на електронно-променевих трубках, використовувані як в промисловості, наукових дослідженнях, так і в побуті. Головну небезпеку для користувачів становить електромагнітне випромінювання монітора в діапазоні 20 Гц – 30 мГц та статичний електричний заряд на екрані.

Джерелом підвищеної небезпеки у побуті з точки зору електромагнітних випромінювань є також мікрохвильові печі, телевізори будь-яких модифікацій, радіотелефони. У теперішній час визнаються джерелами ризику у зв’язку з остан­ні­ми даними про дію магнітних полів промислової частоти: електроплити з елект­ро­проводкою, електричні грилі, праски, холодильники (коли працює компресор).

Вплив електромагнітного поля на організм людини.Механізм впливу ЕМП на біологічні об’єкти дуже складний і недостатньо вивчений. Але в спрощеному вигляді цей вплив можна уявити наступним чином: у електричному полі молекули, з яких складається тіло людини, поляризуються і орієнтуються за напрямком поля: у рідинах, зокрема в крові, під дією електрики з’ÿвляються іони і, як наслідок, струми. Однак іонні струми будуть протікати у тканині тільки по міжклітинній рідині, тому що за постійного поля мембрани клітини, будучи добрими ізоляторами, надійно ізолюють внутрішньоклітинне середовище.

При підвищенні частоти зовнішнього ЕМП електричні властивості живих тканин змінюються: вони втрачають властивості діелектриків і набувають властивостей провідників, до того ж ця зміна відбувається нерівномірно. З подальшим зростанням частоти індукція іонних струмів поступово заміщується поляризацією молекул.

Теплова енергія, що виникла у тканинах людини, збільшує загальне тепловиділення тіла. Якщо механізм терморегуляції тіла не здатний розсіювати надлишкове тепло, може статися підвищення температури тіла. Це відбувається, починаючи з інтенсивності поля, що дорівнює 100 Вт/м2, яка називається тепловим порогом. Органи та тканини людини, які мають слабко виражену терморегуляцію, більш чутливі до опромінення (мозок, очі, нирки, кишечник, сім’яники). Перегрівання тканин та органів призводить до їх захворювання. Підвищення температури тіла на 1 0С та вище недопустиме через можливі необоротні зміни.

Негативний вплив ЕМП викликає оборотні, а також необоротні зміни в організмі: гальмування рефлексів, зниження кров’яного тиску (гіпотонія), упові­ль­нення скорочень серця (брадикардія), зміну складу крові у бік збільшення числа лейкоцитів та зменшення еритроцитів, помутніння кришталика ока (катаракта).

Суб’єктивні критерії негативного впливу ЕМП – головні болі, підвищена втомлюваність, дратівливість, порушення сну, задишка, погіршення зору, підви­щення температури тіла.

Разом із біологічною дією, електростатичне поле та електричне поле промислової частоти обумовлюють виникнення розрядів між людиною та іншим об’єктом, відмінний від людини потенціал. Зареєстровані при цьому струми не являють собою небезпеки, але можуть викликати неприємні відчуття. У будь-якому випадку такому впливу можна запобігти шляхом простого заземлення об’єктів, що мають великі габарити (автобус, дах дерев’яного будинку тощо), і видовжених об’єктів (трубопровід, дротяна загорожа тощо), тому що на них через велику ємність накопичується достатній заряд і суттєвий потенціал, які можуть обумовити помітний розрядний струм.

Великий практичний інтерес становлять дані досліджень впливу магнітного поля промислової частоти. Вчені Швеції виявили у дітей до 15 років, які мешкають навколо ЛЕП, що вони хворіють на лейкемію у 2,7 рази частіше, ніж у контрольній групі, віддаленій від ЛЕП.

Існує велика кількість гіпотез, які пояснюють біологічну дію магнітних полів. Загалом, вони зводяться до індукції струмів в живих тканинах та до безносе­реднього впливу полів на клітинному рівні.

Відносно нешкідливим для людини на протязі тривалого часу пропонується визнати МП, що мають порядок геомагнітного поля та його аномалій, тобто напруженості МП не більше 0,15–0,2 кА/м. За більш високих напруженостей МП починає проявлятися реакція на рівні організму. Характерною рисою цих реакцій є тривала затримка відносно початку дії МП, а також яскраво виражений кумулятивний ефект за тривалої дії МП. Зокрема, експерименти, проведені на людях, показали, що людина починає відчувати МП, якщо воно діє не менше 3–7 с. Це відчуття зберігається деякий час (близько 10 с.) і після закінчення дії МП.

Норми і рекомендації для захисту від ЕМП при експлуатації комп’ютерів.У теперішній час рядом країн розроблено документи, які регламентують правила користування дисплеями. Найбільш відомі шведські документи MPR II 1990:8 (Шведського національного комітету з захисту від випромінювань) та більш жорсткий стандарт ТСО 95 (Шведської конференції професійних союзів). Ці норми застосовуються у всіх країнах Скандинавії і рекомендовані до розповсюдження в країнах ЕС.

Вимоги норм MPR до рівня електромагнітних випромінювань у 20 разів жорсткіші, ніж вимоги ГОСТ, що обмежують рівень випромінювання радіочастот, вимоги ТСО 95 жорсткіші у 50 разів.

Нижче приводяться для порівняння з ГОСТ 12.1.006-84 «Електромагнітні поля радіочастот» дані шведського стандарту MPR ІІ1990:8. В діапазоні частот 5 Гц-2 кГц напруженість електричного поля Е не повинна перевищувати 25 В/м, а магнітна індукція - 250 нТл. Це рівнозначно напруженості магнітного поля Н = 0,2 А/м. В діапазоні частот 2-400 кГц - Е 2,2 В/м, а Н 0,02 А/м. Такі самі значення прийняті тепер і в Росії згідно СанПин 2.2.2.542-96 для відео-дисплейних терміналів на відстані 50 см від них. Цими нормами рекомендується користуватися і в Україні.

У всіх випадках для захисту від випромінювань очі повинні бути розташовані на відстані витягнутої руки до монітора (не ближче 70 см).

Більш пізні монітори з маркуванням Low Radiation практично задовольняють вимоги шведських стандартів. Комп’ютери з рідкокристалічним екраном не наводять статичної електрики і не мають джерел відносно потужного електромагнітного випромінювання. При використанні блока живлення виникає деяке перевищення рівня на промисловій частоті, тому рекомендується працювати від акумулятора.

Найбільш ефективна система захисту від випромінювань реалізується через створення додаткового металічного внутрішнього корпусу, що замикається на вбудований закритий екран. За такої конструкції вдається зменшити електричне та електростатичне поле до фонових значень вже на відстані 5–7 см від корпуса, а за умови компенсації магнітного поля така конструкція забезпечує максимально можливу у наш час безпеку. Такі монітори коштують на 200-400 доларів дорожче звичайних.

Методи та засоби захисту від впливу ЕМП.При невідповідності вимогам норм у залежності від робочого діапазону частот, характеру виконуваних робіт, рівня опромінення і необхідної ефективності захисту застосовують наступні способи та засоби захисту або їх комбінації: захист часом та відстанню; зменшення параметрів випромінювання безпосередньо в самому джерелі випромі­нювання; екранування джерела випромінювання; екранування робочого місця; раціональне розташування установок в робочому приміщенні; встанов­лення раціональних режимів експлуатації установок та роботи обслуговуючого персоналу; застосування засобів попереджувальної сигналізації (світлова, звукова тощо); виділення зон випромінювання; застосування засобів індивідуального захисту.

Захист часом передбачає обмеження часу перебування людини в робочій зоні, якщо інтенсивність опромінення перевищує норми, встановлені за умови опромінення на протязі зміни, і застосовується, коли немає можливості зменшити інтенсивність опромінення до допустимих значень і тільки для випромінювань в діапазоні 300 МГц - 300 ГГц, а також для електростатичного та електричного поля частотою 50 Гц. Допустимий час перебування залежить від інтенсивності опромінення.

Захист відстанню застосовується коли неможливо послабити інтенсивність опромінення іншими заходами, у тому числі й скороченням часу перебування людини в небезпечній зоні. В цьому випадку збільшують відстань між джерелом випромінювання і обслуговуючим персоналом. Цей вид захисту грунтується на швидкому зменшенні інтенсивності поля з відстанню.

Електромагнітна енергія, випромінювана окремими елементами електротер­мічних установок та радіотехнічної апаратури, при відсутності екранів (настроювання, регулювання, випробування) поширюється в приміщенні, відбивається від стін та перекриттів, частково проходить крізь них і трохи розсіюється в них. В результаті утворення стоячих хвиль в приміщенні можуть створюватися зони з підвищеною густиною ЕМВ. Тому роботи рекомендується проводити в кутових приміщеннях першого та останнього поверхів будинків.

Для захисту персоналу від опромінень потужними джерелами ЕМВ поза приміщеннями необхідно раціонально планувати територію радіоцентру, виносити служби за межі антенного поля, встановлювати безпечні маршрути руху людей, екранувати окремі будівлі та ділянки території.

Зони опромінення виділяються на основі інструментальних вимірювань інтенсивності опромінення для кожного конкретного випадку розташування апаратури. Установки огороджують або границю зони позначають яскравою фарбою на підлозі приміщення, передбачаються сигнальні кольори та знаки безпеки відповідно до ГОСТ12.3.026-76.

Для захисту від електричних полів повітряних ліній електропередач необхідно вибрати оптимальні геометричні параметри лінії (збільшення висоти підвісу фазних проводів ЛЕП, зменшення відстані між ними тощо). Це зменшить напруженість поля поблизу ЛЕП в 1,6–1,8 рази.

Для захисту очей від ЕМВ призначені захисні окуляри з металізованими скельцями типу ЗП5-80 (ГОСТ 12.4.013-75). Поверхня одношарових скелець повернута до ока, покрита безколірною прозорою плівкою двоокису олова, яка дає ослаблення електромагнітної енергії до 30 дБ при пропусканні світла не менше 75 %.

Для контролю рівнів ЕМП застосовують різні вимірювальні прилади у залежності від діапазону частот. Вимірювання проводять в зоні перебування персоналу від рівня підлоги до висоти 2 м через кожні 0,5 м.

Захист від лазерного випромінювання.Лазерне випромінювання є електро­маг­нітним випромінюванням, що генерується в діапазоні довжин хвиль l = 0,2 – 1000 мкм. Лазери широко застосовуються у мікроелектроніці, біології, метрології, медицині, геодезії, зв’язку, стереоскопії, голографії, обчислювальної техніки у дослідженнях з термоядерного синтезу та в багатьох інших областях науки і техніки.

Лазери за ступенем небезпеки генерованого ними випроміню­вання поділяються на чотири класи:

1 клас – вихідне випромінювання не становить небезпеки для очей та шкіри;

2 клас – вихідне випромінювання становить небезпеку при опроміненні очей прямим або дзеркально відбитим випроміню­ванням;

3 клас – вихідне випромінювання становить небезпеку при опроміненні очей прямим, дзеркально відбитим, а також дифузним відбитим випромінюванням на відстані 10 см від поверхні, що має властивість дифузного відбивання і (або) при опроміненні шкіри прямим та дзеркально відбитим випромінюванням;

4 клас – вихідне випромінювання становить небезпеку при опроміненні шкіри дифузним відбитим випромінюванням на відстані 10 см від поверхні, що має властивість дифузного відбивання променів.

Робота лазерних установок може супроводжуватися також виникненням інших небезпечних та шкідливих виробничих факторів, таких як: шум, аерозолі, гази, електромагнітне та іонізуюче випромінювання.

Клас небезпеки лазерної установки визначається на основі довжини хвилі випромінювання l (мкм), розрахункової величини енергії опромінення Е (Дж) та ГДР для даних умов роботи.

Визначення рівнів опромінення персоналу для лазерів 2–4 класів повинно проводитися періодично не рідше одного разу на рік в порядку поточного санітарного нагляду.

У тому випадку, коли колективні засоби захисту не дозволяють забезпечити достатнього захисту, застосовуються засоби індивідуаль­ного захисту (ЗІЗ) – окуляри проти лазерів та захисні маски.

Конструкція окулярів проти лазерів повинна забезпечувати зменшення інтенсивності опромінення очей лазерним випроміню­ванням до ГДК у відповідності з вимогами ГОСТ 12.4.013-75.

Електробезпека

Загальні положення.Дія електричного струму на людину носить різноманітний характер. Проходячи через організм людини, електричний струм викликає термічну, електролітичну, а також біологічну дію.

Термічна дія струму проявляється в опіках деяких окремих ділянок тіла, нагріванні кровоносних судин, нервів, крові тощо.

Електролітична дія струму проявляється у розкладі крові та інших органічних рідин організму і викликає значні порушення фізико-хімічного складу.

Біологічна дія струму проявляється як подразнення та збудження живих тканин організму, що супроводжується мимовільними судомними скороченнями м’язів, у тому числі легенів та серця. В результаті можуть виникнути різні порушення і навіть повне припинення діяльності органів кровообігу та дихання.

Ця різноманітність дій електричного струму може призвести до двох видів ураження: до електричних травм та електричних ударів.

Електричні травми являють собою чітко виражені місцеві пошкодження тканин організму, викликані дією електричного струму або електричної дуги. У більшості випадків електротравми виліковні, але іноді при важких опіках травми можуть призвести до загибелі людини. Розрізняють такі електричні травми: електричні опіки, електричні знаки, металізація шкіри, електроофтальмологія та механічні пошкодження.

Електричний опік – найпоширеніша електротравма. Опіки бувають двох видів: опіки струмом (або контактний) та дугові. Опік струмом обумовлений проходженням струму крізь тіло людини в результаті контакту із струмоведучою частиною і є наслідком перетворення електричної енергії у теплову. Розрізняють чотири ступеня опіків: І – почервоніння шкіри; ІІ – утворення пухирів; ІІІ – змертвіння всієї товщі шкіри; ІV – обвуглювання тканин. Важкість ураження організму обумовлюється не ступенем опіку, а площею обпеченої поверхні тіла. Опіки струмом виникають при напругах не вище 1-2 кВ і є у більшості випадків опіками І та ІІ ступеня; іноді бувають і важкі опіки. За більш вищої напруги між струмоведучою частиною та тілом людини утворюється електрична дуга (температура дуги вище 3500 0С і в неї дуже велика енергія), яка спричиняє дуговий опік. Дугові опіки, як правило, важкі – ІІІ та ІV ступеня.

Електричні знаки – чітко окреслені плями сірого або блакитно-жовтого кольору на поверхні шкіри людини, що зазнала дії струму. Знаки бувають також у вигляді подряпин, ран, порізів або забитих місць, бородавок, крововиливів у шкіру та мозолів. У більшості випадків електричні знаки безболісні і лікування їх закінчується добре.

Металізація шкіри – це проникнення у верхні шари шкіри найдрібніших часток металу, що розплавився під дією електричної дуги. Це може статися при коротких замиканнях, вимиканнях рубильників під навантаженням тощо. Металізація супроводжується опіком шкіри, який викликається нагрітим металом.

Електроофтальмологія – ураження очей, викликане інтенсивним випромінюванням електричної дуги, спектр якої містить шкідливі для очей ультрафіолетові та ультрачервоні промені. Крім того, можливе попадання в очі бризок розплавленого металу. Захист від електроофтальмології досягається носінням захисних окулярів, які не пропускають ультрафіолетових променів, і забезпечують захист очей від бризок розплавленого металу.

Механічні пошкодження виникають у результаті різких неправильних судомних скорочень м’язів під дією струму, що проходить крізь тіло людини. В результаті можуть статися розриви шкіри, кровоносних судин та нервової тканини, а також вивихи суглобів і навіть переломи кісток. До цього ж виду травм потрібно віднести забиті місця, травми, викликані падінням людини з висоти, ударами об предмети в результаті мимовільних рухів або втрати свідомості через дію струму. Механічні пошкодження є, як правило, серйозними травмами, що вимагають тривалого лікування.

Електричний удар.Це збудження живих тканин організму електричним струмом, що проходить крізь нього, яке супровод­жується мимовільними судомними скороченнями м’язів. Залежно від наслідку дії струму на організм електричні удари умовно поділяються на наступні чотири ступеня:

І – судомне скорочення м’язів без втрати свідомості;

ІІ – судомне скорочення м’язів, втрата свідомості, але збереження дихання та роботи серця;

ІІІ – втрата свідомості та порушення серцевої діяльності чи дихання (або всього разом);

ІV – клінічна смерть, тобто відсутність дихання та кровообігу.

Причинами смерті в результаті ураження електричним струмом можуть бути: припинення роботи серця, припинення дихання та електричний шок. Припинення роботи серця, як наслідок дії струму на м’яз серця, найнебезпечніше. Ця дія струму може бути прямою, коли струм протікає крізь область серця, і рефлекторною, коли струм проходить по центральній нервовій системі. В обох випадках може статися зупинка серця або настане його фібриляція (безладне скорочення м’язових волокон серця фібрил), що призведе до припинення кровообігу.

Припинення дихання може бути викликане прямою або рефлекторною дією струму на м’язи грудної клітки, що беруть участь у процесі дихання. За тривалої дії струму настає, так звана асфіксія (ядуха) – хворобливий стан в результаті нестачі кисню та надлишку діоксиду карбону в організмі. Під час асфіксії втрачається свідомість, чутливість, рефлекси, потім припиняється дихання і, насамкінець, зупиняється серце – настає клінічна смерть.

Електричний струм – своєрідна важка нервово-рефлекторна реакція організму на сильне подразнення електричним струмом, яке супроводжується глибоким розладом кровообігу, дихання, обміну речовин тощо. Шоковий стан триває від кількох десятків секунд до кількох діб. Після цього може настати повне одужання як результат своєчасного лікувального втручання або загибель організму через повне згасання життєво важливих функцій.

Фактори, що визначають небезпеку ураження електричним струмом. Характер та наслідки дії на людину електричного струму залежать від наступних факторів: електричного опору людини; величини напруги та струму; тривалості дії електричного струму; шляху струму крізь тіло людини; роду та частоти електричного струму; умов зовнішнього середовища.

Електричний опір тіла людини. Тіло людини є провідником електричного струму, однак неоднорідним за електричним опором. Найбільший опір електричному струму справляє шкіра, тому опір тіла людини визначається, головним чином, опором шкіри.

Шкіра складається з двох основних шарів: зовнішнього – епідермісу та внутрішнього – дерми. Зовнішній шар – епідерма, у свою чергу має кілька шарів, з яких самий товстий верхній шар називається роговим. Роговий шар в сухому та незабрудненому стані можна розглядати як діелектрик: його питомий об’ємний опір досягає 105 - 106 Ом×м, що в тисячі разів перевищує опір інших шарів шкіри - дерми. Опір дерми незначний: він у багато разів менший опору рогового шару. Опір тіла людини при сухій, чистій та непошкодженій шкірі (виміряний при напрузі 15–20 В) коливається від 3 до 100 кОм і більше, а опір внутрішніх шарів тіла складає усього 300-500 Ом. Внутрішній опір тіла вважається активним. Його величина залежить від довжини та поперечного розміру ділянки тіла, по якій проходить струм. Зовнішній опір тіла складається наче з двох паралельно включених опорів: активного та ємнісного. На практиці звичайно нехтують ємнісним опором, який має невелике значення, і вважають опір тіла людини активним і незмінним. За розрахункову величину при змінному струмі проми­слової частоти приймають активний опір тіла людини, що дорівнює 1000 Ом.

У реальних умовах опір тіла людини не є сталою величиною. Він залежить від ряду факторів, у тому числі від стану шкіри, стану навколишнього середовища, параметрів електричного кола тощо. Пошкодження рогового шару (порізи, подряпини, садна тощо) зменшують опір тіла до 500–700 Ом, що збільшує небезпеку ураження людини струмом. Такий самий вплив справляє зволоження шкіри водою або потом. Таким чином, робота із електрообладнанням вологими руками або в умовах, що викликають зволоження шкіри, а також при підвищеній температурі, яка викликає посилене виділення поту, підвищує небезпеку ураження людини струмом. Забруднення шкіри шкідливими речовинами, які добре проводять електричний струм (пил, окалина тощо), призводить до зменшення її опору.

На опір тіла справляє вплив площа контактів, а також місце доторкання, тому що у однієї й тієї самої людини опір шкіри неоднаковий на різних ділянках тіла. Найменший опір має шкіра обличчя, шиї, рук на ділянці вище долоні та особливо на тому їх боці, що повернутий до тулуба, під пахвами, на тильному боці кисті тощо. Шкіра долоні та підошов має опір, що у багато разів перевищує опір шкіри інших ділянок шкіри.

Із збільшенням струму та часу його проходження опір тіла людини падає, тому що при цьому посилюється місцеве нагрівання шкіри, що призводить до розширення її судин, до посилення постачання цієї ділянки кров’ю та до збільшення виділення поту. Із зростанням напруги, що прикладається до тіла людини, опір шкіри зменшується в десятки разів, наближаючись до опору внутрішніх тканин (300-500 Ом) Це пояснюється електричним пробоєм рогового шару шкіри, збільшенням струму, що проходить крізь шкіру. Із збільшенням частоти струму опір тіла буде зменшуватися і при 10-20 кГц зовнішній шар шкіри практично втрачає опір електричному струму.

Величина струму та напруга. Основним фактором, що обумовлює результат ураження електричним струмом, є сила струму, що проходить крізь тіло людини. Напруга, прикладена до тіла людини, також впливає на результат ураження, але лише настільки, наскільки вона визначає значення струму, який проходить крізь людину.

В і д ч у т н и й с т р у м – електричний струм, що викликає під час проходження через організм відчутні подразнення. Відчутні подразнення викликає змінний струм силою 0,6 – 1,5 мА та постійний – силою 5–7 мА. Вказані значення є п о р о г о в и м и відчутними струмами: з них починається область відчутних струмів.

С т р у м, щ о н е в і д п у с к а є – електричний струм, що викликає під час проходження крізь людину нездоланні судомні скорочення м’язів руки, у якій затиснутий провідник. Пороговий струм, що не відпускає, складає 10–15 мА змінного струму та 50–60 мА постійного струму. За такого струму людина вже не може самостійно розтиснути руку, в якій затиснута струмоведуча частина, і опиняється наче прикутою до неї.

С т р у м ф і б р и л я ц і ї – електричний струм, що викликає під час проходження крізь організм фібриляцію серця. П о р о г о в и й струм фібриляції складає 100 мА змінного струму і 300 мА постійного за тривалості дії 1-2 с на шляху рука-рука або рука-ноги. Струм фібриляції може досягти 5 А. Струм більше 5 А фібриляції серця не викликає. За таких струмів відбувається зупинка серця.

Рід та частота електричного струму.Постійний струм приблизно в 4–5 разів безпечніший змінного. Це витікає із порівняння порогових відчутних, а також таких, що не відпускають струмів для постійного та змінного струму. Значно менша небезпека ураження постійним струмом підтверджується і практикою експлуатації електроустановок: випадків смертельного ураження людей струмом в установках постійного струму в кілька разів менше, ніж в аналогічних установках змінного струму.

Це твердження справедливе тільки для напруг до 250–300 В. При висщих напругах постійний струм небезпечніший, ніж змінний (з частотою 50 Гц). Для змінного струму грає роль також і його частота. Із збільшенням частоти змінного струму повний опір тіла зменшується, що призводить до збільшення струму, який проходить крізь людину, а отже, підвищується небезпека ураження.

Найбільшу небезпеку становить струм з частотою від 50 до 100 Гц; при подальшому підвищенні частоти небезпека ураження зменшується і повністю зникає при частоті 45–50 кГц. Ці струми зберігають небезпеку опіків. Зниження небезпеки ураження струмом із зростанням частоти стає практично помітним при 1–2 кГц. Встановлено, що фізично здорові та сильні люди легше переносять електричні удари. Підвищеною сприйнятливістю до електричних ударів відрізняються особи, що страждають хворобами шкіри, серцево-судинної системи, органів внутрішньої секреції, легень, нервовими хворобамитощо.

Умови зовнішнього середовища. Стан навколишнього повітряного середовища, а також навколишня обстановка може суттєвим чином впливати на небезпеку ураження струмом. Вогкість, пил, який проводить струм, їдкі пари та гази, що справляють руйнівну дію на ізоляцію електроустановок, а також висока температура навколишнього повітря, зменшують електричний опір тіла людини, що збільшує небезпеку ураження її струмом.

Залежно від наявності перерахованих умов, що підвищують небезпеку дії струмом на людину, «Правила улаштування електроустановок» ділять всі приміщення за небезпекою ураження людей електричним струмом на наступні класи: без підвищеної небезпеки, з підвищеною небезпекою, особливо небезпечні, а також території розміщення зовнішніх електроустановок.

1. Приміщення без підвищеної небезпеки характеризуються відсутністю умов, що створюють підвищену або особливу небезпеку.

2. Приміщення з підвищеною небезпекою характеризуються наявністю у них однієї з наступних умов, що створюють підвищену небезпеку: а) вологості (відносна вологість повітря протягом тривалого часу перевищує 75 %) або струмопровідного пилу; б) струмопровідних підлог (металеві, земляні, залізобетонні, цегляні тощо); в) високої температури (вище + 35 0С); г) можливості одночасного доторкання людини до металоконструкцій будівель, що мають контакт з землею, до технічних апаратів, механізмів тощо, з одного боку, і до металевих корпусів електрообладнання – з другого боку.

3. Особливо небезпечні приміщення характеризуються наявністю одної з наступних умов, що створюють особливу небезпеку: а) особливої вогкості (відносна вологість повітря близько 100 %: стеля, стіни, підлога і предмети у приміщенні просочені вологою); б) хімічно активного або органічного середовища (що руйнує ізоляцію та струмоведучі частини електрообладнання); в) одночасно двох або більше умов підвищеної небезпеки.

Критерії безпеки електричного струму. Під час проектування, розрахунку та експлуатаційного контролю захисних систем керуються безпечними значеннями струму за даного шляху його протікання та тривалості впливу у відповідності з ГОСТ 12.1.038-82: за тривалого впливу допустимий безпечний струм прийнятий таким, що дорівнює 1 мА; за тривалості впливу до 30 с – 6 мА; для дії 1с та менше величини струмів не можуть розглядатися як такі, що забезпечують повну безпеку і приймаються в якості практично допустимих з досить малою імовірністю ураження.

Основні причини ураження електричним струмом.

¨ Випадкове доторкання до струмоведучих частин, що перебувають під напругою у результаті: помилкових дій під час проведення робіт; несправності захисних засобів, якими потерпілий торкався струмоведучих частин тощо.

¨ Поява напруги на металевих конструктивних частинах електрообладнання в результаті: пошкодження ізоляції струмоведучих частин; замикання фази мережі на землю; падіння проводу (що перебувають під напругою) на конструктивні частини електрообладнання та ін.



/footer.php"; ?>