Тенденции и перспективы развития датчиков тревожной сигнализации

По результатам проведенных исследований можно сделать краткий вывод о том, что современным датчикам тревожной сигнализации присущи следующие основные тенденции развития:

  • интеграция различных принципов действия (например, двойной технологии: инфракрасный и микроволновый в одном корпусе);
  • интеграция датчиков со средствами связи;
  • микросистемная интеграция;
  • использование компьютерной (микропроцессорной) обработки;
  • наличие искусственного интеллекта;
  • децентрализация, самотестирование и автономность работы.

Пожалуй, наиболее революционные изменения в оперативно-технических характеристиках датчиков произошли после внедрения микропроцессорной обработки сигналов (МПОС) [2], которая позволила обеспечить в дальнейшем все перечисленные выше тенденции развития. Этот вывод можно подтвердить на примере современных датчиков “разбития стекла”, использующих микропроцессорный анализатор сигналов, распознающий характерные спектральные составляющие, возникающие при разбивании стекла.

В частности, датчики серии DS1100 фирмы Detection Systems используют микропроцессорный анализатор сигналов, который контролирует аналоговый сигнал в широком спектре частот. Включение тревоги происходит только в том случае, если спектральные составляющие сигнала и их временная динамика изменения соответствует набору справочных данных. В этом случае снижается вероятность ложной тревоги и гарантируется надежная работа датчика в сложных условиях. Данные датчики предназначены для защиты простых, закаленных и армированных стекол, а также стекол с пленочным покрытием. Режим тестирования позволяет проводить проверку уровня внешних шумов, осуществлять раздельный контроль уровня инфранизких и высокочастотных шумов и определять место оптимального расположения датчика даже в сложных условиях.

Рассматривая перспективы развития ДТС, нельзя не остановиться на эффективных тонкопленочных магниторезистивных датчиках, в которых используется магниторезистивный эффект, т.е. изменение электрического сопротивления материала под воздействием внешнего магнитного поля. Основными элементами структуры датчика являются два ферромагнитных слоя, изготовленные из сплавов Со, Ni, Fe и разделенные прослойкой немагнитного металла – Cu, Ag, Au и др. В качестве фиксирующего слоя, создающего обменное взаимодействие с ближайшим ферромагнитным слоем для его фиксации, обычно используются пленки FeMn, FeIr, NiO.

Среди областей применения магниторезистивных датчиков можно отметить устройства для измерения напряженности постоянного и переменного магнитного поля (магнитометры), навигационные приборы (электронные компасы), измерители тока, устройства гальванической развязки, датчики углового и линейного положений, линейки (матрицы) датчиков для диагностики печатных плат и изделий из ферромагнитных материалов, датчики для автомобилей (тахометры), комбинированные головки воспроизведения для магнитных дисков и лент, системы безопасности.

Пожалуй, наиболее сильное влияние на развитие ДТС в последние годы оказали фотоэлектрические приборы с переносом заряда (ФППЗ). В этих твердотельных приборах зарядовые пакеты передаются к выходному устройству вследствие перемещения положения потенциальных ям. Пороговая чувствительность ФПЗС соответствует восприятию изображения объекта при свете звезд. В настоящее время ФПЗС являются основной элементной базой в следующих областях:

  • бытовые телевизионные системы (форматы VHS, SVHS, HDTV и др.);
  • специализированные телевизионные системы: охрана, медицина, анализ движущихся изображений, научные исследования, транспорт;
  • техническое зрение роботов;
  • устройства ввода изображения в ЭВМ;
  • цифровые фотокамеры;
  • бесконтактные измерительные устройства;
  • наземная и космическая астрономия;
  • дистанционное зондирование Земли из космоса;
  • системы безопасности.

Одним из направлений дальнейшего развития ДТС является поиск принципиально новых подходов к созданию современных датчиков. В качестве примера рассмотрим реализацию устройства защиты от несанкционированного доступа (НСД) человека в контролируемую зону на основе торсионных взаимодействий. Данное устройство разработано в Пензенском государственном университете (ПГУ).

В настоящее время для защиты от НСД используются различные датчики обнаружения перемещения объекта, в том числе, основанные на эффекте Доплера. Основным недостатком таких датчиков является возможность отказа в работе, если скорость перемещения становится ниже граничной. Поэтому весьма актуальной проблемой является поиск новых принципов обнаружения медленных и очень медленных (до сантиметра в час) перемещений человека в контролируемом секторе на расстоянии нескольких метров. Разработчики из ПГУ использовали тот факт, что человек является биологическим объектом, имеющим комплексное биополе, в состав которого входит энергоинформационная составляющая, поэтому человека можно рассматривать как источник сложного торсионного поля.

В теории энергоинформационного взаимодействия известен эффект изменения хода часов при воздействии внешнего торсионного поля. Поэтому в качестве основы датчика, реагирующего на изменение торсионной обстановки в помещении при появлении человека, был взят датчик времени с электронным задающим генератором. В ходе экспериментов была также разработана методика исследований, позволившая выделить торсионное воздействие среди прочих. В течение трех лет велась работа по созданию элементов, чувствительных к воздействию торсионных полей, и выявлению их влияния на чувствительность и пространственную избирательность датчика.

Разработанный датчик торсионного поля был подвергнут тщательным экспериментальным исследованиям, в результате которых было установлено:

  • электронный датчик времени, помещенный в многослойный заземленный электромагнитный экран-корпус, реагирует на перемещения человека относительно датчика на расстоянии нескольких метров;
  • наблюдаемая величина реакции датчика на перемещения человека, выраженная относительным изменением периода или частоты задающего генератора, может быть использована в различных практических приложениях;
  • различные схемотехнические и конструкционные решения позволяют получить свойство пространственной направленности датчика, а также повысить его чувствительность.

Полученные практические результаты по созданию датчика торсионного поля являются весьма многообещающими и представляют несомненный интерес для разработчиков не только средств защиты от вредных полей, но также и средств контроля НСД к различным объектам.

Таким образом, датчики тревожной сигнализации, являющиеся обязательным звеном любой современной системы безопасности, определяют основные оперативно-технические характеристики СБ, динамично развиваются и имеют хорошие перспективы дальнейшего развития.

Выводы

Анализ состояния и тенденций развития датчиков тревожной сигнализации для защиты от несанкционированного доступа в контролируемые помещения показал следующее.

  • В настоящее время ДТС являются наиболее динамически развивающимися компонентами систем физической защиты объектов.
  • Наилучшие характеристики из всех существующих имеют интегральные ДТС с двойной и тройной технологией.
  • Весьма перспективными для решения нетрадиционных задач физической защиты помещений являются микросистемные и торсионные датчики, в частности, для биометрической бесконтактной идентификации.
  • Основными направлениями дальнейшего развития ДТС являются интеграция, микропроцессорная обработка, искусственный интеллект, самотестирование, децентрализация, внедрение новых физических явлений и процессов.
  • Весьма эффективно использование ДТС при решении нетрадиционных задач физической защиты помещений.
  • Новые микроэлектронные технологии существенно влияют на состав и ОТХ современных ДТС, в частности, использование твердотельных фотоэлектрических датчиков с зарядовой связью позволяет оптимально интегрировать систему охранного телевидения в систему физической защиты объекта.
СОВРЕМЕННЫЕ СИСТЕМЫ ОХРАНЫ ПЕРИМЕТРОВ 1. Введение 1.1. Периметр — первая линия защиты Современные электронные системы охраны весьма разнообразны и в целом достаточно эффективны. Однако большинство из них имеют общий недостаток: они не могут обеспечить раннее детектирование вторжения на территорию объекта. Такие системы, как правило, ориентированы на обнаружение нарушителя, который уже проник на охраняемую территорию или в здание. Это касается, в частности, систем видеонаблюдения; они зачастую с помощью устройства видеозаписи могут лишь подтвердить факт вторжения после того, как он уже произошел. Квалифицированный нарушитель всегда рассчитывает на определенное временное “окно”, которое проходит от момента проникновения на объект до момента срабатывания сигнализации. Минимизация этого интервала времени является коренным фактором, определяющим эффективность любой охранной системы, и в этом смысле привлекательность периметральной охранной сигнализации неоспорима. Периметральная граница объекта является наилучшим местом для раннего детектирования вторжения, т.к. нарушитель взаимодействует в первую очередь с физическим периметром и создает возмущения, которые можно зарегистрировать специальными датчиками. Если периметр представляет собой ограждение в виде металлической решетки, то ее приходится перерезать или преодолевать сверху; если это стена или барьер, то через них нужно перелезть; если это стена или крыша здания, то их нужно разрушить; если это открытая территория, то ее нужно пересечь. Все эти действия вызывают физический контакт нарушителя с периметром, который предоставляет идеальную возможность для электронного обнаружения, т.к. он создает определенный уровень вибраций, содержащих специфический звуковой “образ” вторжения. При определенных условиях нарушитель может избегнуть физического контакта с периметром. В этом случае можно использовать “объемные” датчики вторжения, обычно играющие роль вторичной линии защиты. Датчик любой периметральной системы реагирует на появление нарушителя в зоне охраны или определенные действия нарушителя. Сигналы датчика анализируются электронным блоком (анализатором или процессором), который, в свою очередь, генерирует сигнал тревоги при превышении заданного порогового уровня активности в охраняемой зоне. 1.2. Общие требования к периметральным системам Любая периметральная система охраны должна отвечать определенному набору критериев, некоторые из которых перечислены ниже:
  • Возможность раннего обнаружения нарушителя — еще до его проникновения на объект
  • Точное следование контурам периметра, отсутствие “мертвых” зон
  • По возможности скрытая установка датчиков системы
  • Независимость параметров системы от сезона (зима, лето) и погодных условий (дождь, ветер, град и т.д.)
  • Невосприимчивость к внешним факторам “нетревожного” характера — индустриальные помехи, шум проходящего рядом транспорта, мелкие животные и птицы
  • Устойчивость к электромагнитным помехам — грозовые разряды, источники мощных электромагнитных излучений и т.п.
Очевидно, что периметральная охранная система должна обладать максимально высокой чувствительностью, чтобы обнаружить даже опытного нарушителя. В то же время эта система должна обеспечивать по возможности низкую вероятность ложных срабатываний. Причины ложных тревог могут быть различными. Система может, например, среагировать при появлении в зоне охраны птиц или мелких животных. Сигнал тревоги может появиться при сильном ветре, граде или дожде. Кроме того, ложная тревога может возникнуть из-за “технологических” причин: неграмотный монтаж датчиков на ограде, неправильная настройка электронных блоков или просто неудовлетворительное инженерное состояние самой ограды, которая может, например, вибрировать при сильном ветре. Сегодня рынок периметральных систем, как отечественных, так и импортных, весьма широк. Тем не менее, выбрать наиболее эффективную систему, отвечающую специфическим требованиям объекта, иногда бывает непросто. При выборе и проектировании системы нужно учитывать множество факторов — тип ограды, топографию и рельеф местности, возможность выделения полосы отчуждения, наличие растительности, соседство железных дорог, эстакад и автомагистралей, наличие линий электропередач. Весьма важным фактором является квалификация и опыт организации, которая проектирует и монтирует периметральную систему охраны. Опыт показывает, что зачастую эффективность системы определяется не столько ее исходными техническими параметрами, сколько правильностью выбора и грамотностью ее монтажа. Для оценки эффективности периметральных систем чаще всего используют специальные испытательные полигоны. Охранные системы там монтируют на стандартных оградах и оценивают их по специальным методикам, имитируя различные действия нарушителя — разрушение ограды, перелезание, подкоп и др. 1.3. Специфика применения периметральных систем Особенность периметральных систем состоит в том, что обычно они конструктивно интегрированы с ограждением и генерируемые охранной системой сигналы в сильной степени зависят как от физико-механических характеристик ограды (материал, высота, жесткость и др.), так и от правильности монтажа датчиков (выбор места крепления, метод крепления, исключение случайных вибраций ограды и т.п.). Очень большое значение имеет правильный выбор типа охранной системы, наиболее адекватно отвечающей данному типу ограды. Периметральные системы используют, как правило, систему распределенных или дискретных датчиков, общая протяженность которых может составлять несколько километров. Такая система должна обеспечивать высокую надежность при широких вариациях окружающей температуры, при дожде, снеге, сильном ветре. Поэтому любая система должна обепечивать соответсвующую автоматическую адаптацию к погодным условиям и возможность дистанционной диагностики. Любая периметральная система должна легко интегрироваться с другими охранными системами, в частности, с системой видеонаблюдения. 2. Радиолучевые системы Такие системы содержат приемник и передатчик СВЧ сигналов, которые формируют зону обнаружения в виде вытянутого эллипсоида вращения (рис.1). Длина отдельной зоны охраны опредлеятся расстоянием между приемником и передатчиком, а диаметр зоны варьируется от долей метра до нескольких метров. Рис. 1. Принцип действия радиолучевой системы. Принцип действия таких систем основан на анализе изменений амплитуды и фазы принимаемого сигнала, возникающих при появлении в зоне постороннего предмета. Системы применимы там, где обеспечивается прямая видимость между приемником и передатчиком, т.е. профиль поверхности должен быть достаточно ровным и в зоне охраны должны отсутствовать кусты, крупные деревья и т.п. Применяют радиолучевые системы как при установке вдоль оград, так и для охраны неогражденных участков периметров. Эти системы обычно рассчитаны на обнаружение нарушителя, который предодолевает рубеж охраны в полный рост или согнувшись. Общим недостатком радиолучевых систем является наличие “мертвых” зон — чувствительность системы понижена вблизи приемника и передатчика, поэтому приемники и передатчики соседних зон должны устанавливаться с перекрытием в несколько метров. Кроме того, радиолучевые системы недостаточно чувствительны непосредственно над поверхностью земли (30 — 40 см), что может позволить нарушителю преодолеть рубеж охраны ползком. Относительно широкая зона чувствительности системы обуславливает ограниченность ее применения на объектах, где возможно случайное попадание в зону обнаружения людей, транспорта и т.п. В таких ситуациях для предотвращения ложных срабатываний рекомендуется с помощью дополнительной ограды оборудовать предзонник. Блоки радиолучевых систем устанавливают либо на грунте (с помощью специальных стоек), либо на ограде или стене здания. При установке системы на грунте требуется подготовить охраняемую зону — спланировать территорию, удалить кустарники, деревья и посторонние предметы. При эксплуатации необходимо периодически выкашивать траву и убирать снег. При значительной высоте снежного покрова (более 0,5 м) необходимо изменить высоту крепления блоков на стойках и провести их дополнительную юстировку. Рассмотрим несколько радиолучевых периметральных систем Система “Гефест”, выпускаемая предприятием Дедал, предназначена для охраны огражденных и неогражденных рубежей длиной от 10 до 200 метров. Она позволяет обнаруживать человека передвигающегося в полный рост или согнувшись. Зона чувствительности имеет высоту 2,5 м и ширину 5 м. Приемник системы анализирует изменения амплитуды сигнала и при превышении заданного порога включает реле тревоги. В системе применен оригинальный алгоритм обработки обнаружения с раздельной регулировкой чувствительности для ближних и среднего участков зоны чувствительности. Система не срабатывает при появлении в зоне мелких животных или птиц; она устойчива к воздействиям снега, дождя и ветра. В комплект поставки входят передатчик, приемник, блок питания, монтажный комплект и соединительные кабели. Приемник и передатчик помещены в корпуса из ударопрочного полистирола с габаритами 260 х 210 х 60 мм. Диапазон рабочих температур — от -40 до +50 градусов цельсия, напряжение питания — 12 В, потребляемая мощность 1 Вт. Обеспечена возможность дистанционного контроля работоспособности системы. Аналогичная по назначению система “Грот” позволяет защищать участки периметра длиной до 300 м при ширине зоны обнаружения 6 м. Усовершенствованная конструкция блоков приемника и передатчика позволила повысить однородность электромагнитного поля и практически исключить области малой чувствительности на краях зоны. Система сохраняет работоспособность и не требует дополнительной настройки при высоте снежного покрова до 70 см. Для зон длиной до 500 м можно использовать радиолучевое охранное устройство “Барьер”, по конструктивным данным аналогичное системе “Гефест”. Периметральная радиолучевая система РЛД-94 (фото 1) выпускается в трех модификациях: для участков длиной 30, 100 и 300 м. Модификации на 100 и 300 м представляют собой базовый комплект (на 30 м), оснащенный дополнительными отражателями. В приборе используется импульсный синхронный режим работы, что позволяет снизить энергопотребление и повысить помехоустойчивость к воздействию электромагнитных помех. Система РЛД-94 широко используется в охранных комплексах АЭС, крупных предприятий, таможенных терминалов и др. Фото 1. Периметральная радиолучевая система РДЛ-94. Из зарубежных радиолучевых систем, представленных на российском рынке, можно отметить “Модель 16001” фирмы Senstar-Stellar (США). Система позволяет защищать зоны длиной до 240 м и предназначена для установки на земле, на торце ограды или на стене здания. Отличительная особенность передатчика — возможность регулировки угловой ширины диаграммы излучения в пределах от 11О до 24О и таким образом оптимизировать поперечное сечение чувствительной зоны. Широкий спектр радиолучевых охранных приборов выпускает итальянская компания CIAS. Приборы серии Ermusa отличаются компактностью и предназначены для использования как в помещениях, так и на улице для барьеров протяженностью 40 — 80 м. На фото 2 показаны блоки радиолучевой системы ERMO 482 фирмы CIAS. Приборы выпускаются в нескольких модификациях — для рубежей протяженнностью 50, 80, 120 и 200 м. Используемые в блоках параболические антенны обеспечивают малую расходимость луча, что позволяет использовать эту систему даже в условиях интенсивного городского движения. Частота излучения передатчика — 10,58 ГГц, питание — от аккумуляторной батареи или сетевого адаптера. Диаметр блока — 310 мм, глубина — 270 мм, масса — 3кг. Блоки монтируются на сборных металлических штангах, позволяющих устанавливать излучатель и приемник на высоте до 1 метра. Со штангой конструктивно объединена коробка для блока питания и аккумулятора. Диапазон рабочих температур -25О до +55О С. Фото 2. Система ERMO 482. Все перечисленные системы обеспечивают только одну зону охраны и применяются на прямолинейных участках периметра. На участках с непрямолинейной границей или при сложном рельефе местности нужно использовать многозонную систему, состоящую из нескольких комплектов аппаратуры. Для небольших объектов были разработаны многозонные радиолучевые системы, имеющие один общий блок обработки сигналов. В комплект системы “Протва” входит пять приемо-передающих пар и блок анализатора сигналов. Каждая приемо-передающая пара позволяет защитить участок длиной до 100 м. Весь комплект хорошо подходит для охраны, например, небольшого склада — 4 зоны периметра и 1 зона охраны ворот. Имеются режимы дистанционного контроля и ручного отключения любого канала. Система питается от сети переменного тока (220 В или 36 В) или от источника постоянного тока 24 В. Рабочая температура от -50О до +50О С; влажность — до 98% (при температуре +35О С). Для специальных применений создана быстроразворачиваемая полевая система “Витим” (фото 3). Она используется для организации временных рубежей охраны на неподготовленных территориях. Комплект состоит из 11 приемо-передающих устройств, позволяющих организовать 10 отдельных участков охраны протяженностью по 100 м. Каждая из 11-ти стоек содержит встроенный аккумулятор для питания приборов. Приемники подключены к выносному блоку индикации, который показывает номер участка, в котором возник сигнал тревоги. Особенность системы — использование радиолуча для подачи сигналов тревоги. Это позволяет оперативно развернуть систему — для установки и настройки 10 зон требуется не более 1 часа. Прибор широко используется на объектах Министерства обороны. Фото 3. Система “Витим”. Все перечисленные выше радиоволновые детекторы являются “двухпозиционными” устройствами — в комплект входят передатчик и приемник. Более простыми и дешевыми являются “однопозиционные” устройства, представлющие по сути дела маломощные радары. Они могут применяться для защиты участков протяженностью до 20 м — ворота и окна складов, зоны въезда транспорта и т.п. Особенность однопозиционных систем по сравнению с двухпозиционными — менее четкая граница чувствительной зоны, “размытость” ее краев. Однопозиционные системы “Агат-3П” и “Агат-СП3” предназначены для применения в помещениях (рабочая температура от -5О до +50О С). Электронный блок имеет размеры 260 х 210 х 60 мм; напряжение питания 12 В, потребляемая мощность 0,5 Вт. Дальность обнаружения — 16 и 20 м соответственно, поперечные размеры чувствительной зоны — 5 х 5 м. Однопозиционный прибор “Агат-СП3У” можно использовать и на улице (рабочая температура от -40О до +50О С). Прибор отличается компактностью (размер блока 110 х 80 х 45 мм) и малым энергопотреблением (менее 0,1 Вт при напряжении 12...30 В). Размер чувствительной зоны — 20 х 5 х 5 м. Во всех приборах серии “Агат” обеспечены регулировка чувствительности и адаптивный порог срабатывания. 3. Радиоволновые системы Чувствительным элементом такой системы является пара расположенных параллельно проводников (кабелей), к которым подключены соответственно передатчик и приемник радиосигналов. Вокруг проводящей пары (“открытой антенны”) образуется чувствительная зона, диаметр которой зависит от взаимного расположения проводников. При появлении человека в зоне чувствительности сигнал на выходе приемника изменяется и система генерирует сигнал тревоги. При использовании радиоволновых систем на оградах, кабели устанавливают либо на специальных стойках на верхнем торце ограды, либо непосредственно на поверхности ограды. Выпускаются модификации радиоволновых систем также для защиты неогражденных территорий. При этом кабели устанавливают в грунт на глубину 15 — 30 см. Такая система охраны является скрытой, но подвержена сильному влиянию погодных условий, снижающих стабильность ее параметров. Преимущества радиоволновых систем перед лучевыми — независимость от профиля почвы и точное следование линии ограды. Одно из наиболее известных отечественных охранных устройств радиоволнового типа — система “Уран-М”— разработка предприятия НИКИРЭТ (г. Заречный, Пензенская обл.). Двухпроводная линия (рис. 2.) закрепляется на вертикальных или наклонных кронштейнах (консолях), выполненных из диэлектрика (входят в комплект поставки). В качестве проводников используется провод полевой телефонной связи П-274М, обеспечивающий достаточную механическую прочность и стойкость к атмосферным воздействиям. Длина одной зоны охраны находится в пределах от 10 до 250 м. Расстояние между соседними кронштейнами обычно составляет 6...8 м, в районах с сильными ветрами его рекомендуется уменьшать до 3...4 м. Рис. 2. Схема двухпроводного радиоволнового устройства. Для протяженных периметров используют несколько комплектов “Уран-М”. Для исключения влияния соседних зон предусмотрен режим взаимной синхронизации до 22 — 25 отдельных комплектов. Радиоволновые системы можно устанавливать практически на любых жестких оградах (кирпич, бетон, металл). В состав системы “Уран-М” входят: задающий блок, подключаемый с одной стороны проводной линии, и блок обработки сигналов, подключаемый с другой стороны линии. Задающий блок формирует импульсный высокочастотный сигнал, создающий электромагнитное поле между проводниками. Зона обнаружения имеет в поперечном сечении вид эллипса, в фокусах которого расположены проводники. Расстояние между проводниками обычно составляет 0,4 м; при этом зона обнаружения имееть размер 0,5 х 0,8 м. Система настраивается для детектирования объекта массой более 30 — 40 кг и не срабатывает при попадании в зону птиц или мелких животных. Система не срабатывает при движении транспорта на расстоянии более 3 м от чувствительных проводников. Напряжение питания 20...30 В, ток питания — не более 100 мА. Обеспечен режим дистанционного контроля работоспособности. Охранное устройство устойчиво к воздействию сильного дождя (до 40 мм/час), снега, града и ветра со скоростью до 20 м/сек. Электронные блоки имеют размеры 255 х 165 х 110 мм, они сохраняют работоспособность в температурном диапазоне от -40О до +40О. Конструкция блоков обеспечивает защиту от внешних электромагнитных помех и высокой влажности. Американская компания Senstar-Stellar предлагает радиоволновое устройство “H-Field” с кабелями, укладываемыми непосредственно в землю. Такая система предназначена для охраны открытых пространств, подступов к объектам и т.п. Два параллельных кабеля (приемный и передающий) закапываются в любой грунт на грубину 10 — 15 см и на расстоянии примерно 2-х метров друг от друга (рис. 3). Вокруг кабелей над поверхностью почвы формируется электромагнитное поле (зона обнаружения) шириной 3м и высотой 1 м. Максимальная длина одной зоны обнаружения — 150 м. Кабели подключаются соответственно к приемнику и передатчику (или к общему приемо-передающему блоку — трансиверу). Эффективность детектирования нарушителя обеспечивается тем, что для выбранной частоты человеческое тело представляет собой как бы антенну размером в 1/4 длины радиоволны и поэтому нарушитель сильно изменяет параметры принимаемого сигнала. Рис. 3. Схема расположения кабелей системы H-Field. Алгоритм обработки сигналов в системе “H-Field” предполагает выполнение трех условий: - масса попавшего в зону объекта должна быть больше заранее установленного значения (масса человеческого тела); - объект должен двигаться со скоростью, не меньшей определенного значения (в диапазоне скоростей человека); - оба указанных условия выполняются в заданном интервале времени. Система “H-Field” обеспечивает скрытную установку датчиков при произвольном профиле линии охраны. Кабели нечувствительны к сейсмическим и акустическим воздействиям, их можно монтировать в грунте, под асфальтовыми дорогами и др. Одна из современных радиоволновых технологий обнаружения получила наименование RAFIDRadio Frequency Intruder Detection (Радиочастотное Детектирование Вторжения). Эта охранная система создана английской компанией Geoquip, широко известной своими периметральными системами на сенсорных микрофонных кабелях. В простейшем случае система RAFID содержит пару “Излучающих Фидеров” (ИФ), один из которых является излучающей, а другой — приемной антенной радиочастотного поля. Выходной сигнал приемника непрерывно контролируется анализатором. ИФ представляет собой специально сконструированный коаксиальный кабель, содержащий внутренний провод, изолированный диэлектриком от внешнего экрана (рис. 4). Внешний экран может представлять собой медную оплетку, похожую на оплетку обычного коаксиального кабеля. Особенностью ИФ являются так называемые “порты”, т.е. отверстия в экране, расположенные с регулярными интервалами. Конструкция кабеля обеспечивает излучение электромагнитного поля при пропускании по нему тока. Вблизи обоих кабелей формируется невидимое электромагнитное поле, конфигурация которого зависит от взаимного расположения ИФ. Рис. 4. Конструкция излучающего фидера системы RAFID. Попавший в радиочастотное поле объект изменяет фазу и амплитуду принимаемого сигнала (эффект Допплера), в результате чего анализатор генерирует сигнал тревоги. Кабели располагают параллельно друг другу и монтируются на жесткой стене или другом ограждении, обеспечивая зону детектирования, как показано на рис. 5. (Расстояние между кабелями и их расположение определяются конкретными требованиями заказчика и условиями детектирования).

Рис. 5 (а, б) зоны обнаружения системы RAFID.

Кабели системы RAFID устанавливаются на жестких оградах (бетон, кирпич, дерево) или непосредственно в грунте. Количество линий кабеля (2 или 3) и их расположение на ограде определяются задачей, стоящей перед охранной системой. Так, если нужно регистрировать нарушителя, пытающегося перелезть через ограду, то кабели располагаются вблизи средней линии ограды (примерно на половине ее высоты), см. рис. 5а. При этом вблизи нижней части ограды может быть оставлена нечувствительная зона — “аллея для животных”, на которых не должна реагировать система. Если же нужно обнаружить нарушителя, только приближающегося к линии периметра, то в этом случае один из кабелей крепят в нижней части ограды или непосредственно в почве на некотором расстоянии от стены (рис. 5б).

Для обработки сигналов в системе применен мощный процессор, позволяющий проводить “обучение” системы непосредственно на объекте. Процессор содержит в памяти как типовые сигналы вторжения, так и нетревожные сигналы от окружающей обстановки (проходящий транспорт и т.п.). При совпадении реально регистрируемого сигнала с одним из записанных в памяти тревожных образов система выдает сигнал тревоги. Система практически не подвержена влиянию таких атмосферных факторов, как дождь, туман, град, снег, дым и применяется в различных климатических зонах.

Заключение

Принцип действия всех описанных выше охранных систем основан на использовании электромагнитных волн радиочастотного диапазона. Однако для охраны периметров разработаны и успешно применяются и другие системы, работающие с детекторами различных типов: оптические инфракрасные датчики (лучевые и пассивные), сейсмические вибрационные датчики, микрофонные кабели, емкостные системы, волоконно-оптические кабели и др. Они будут рассмотрены в следующих номерах журнала.

 

 

 

 

СОВРЕМЕННЫЕ СИСТЕМЫ ОХРАНЫ ПЕРИМЕТРОВ (Продолжение. Начало в № 3, 1999) Введение В первой части статьи мы рассмотрели некоторые системы охраны периметров, использующие радиоизлучение — радиолучевые и радиоволновые. В настоящем разделе описаны охранные системы, базирующиеся на применении оптического (инфракрасного) излучения, а также так называемые “емкостные” системы. 1. Инфракрасные системы 1.1. Активные лучевые ИК системы Лучевые инфракрасные системы (их часто называют также линейными активными оптико-электронными извещателями) состоят из передатчика и приемника, располагаемых в зоне прямой взаимной видимости. Такой датчик формимует сигнал тревоги при прерывании луча, попадающего на фотоприемный блок. Отличительная особенность активных лучевых систем — возможность создания очень узкой зоны обнаружения. На практике сечение чувствительной зоны определяется размером используемых в оптических блоках линз. Это особенно важно для объектов, вокруг которых невозможно создать зону отчуждения. Однако, как и радиолучевые, ИК-лучевые системы могут применяться только на прямолинейных участках периметров или оград. Основная проблема лучевых ИК-охранных приборов — ложные срабатывания при неблагоприятных атмосферных условиях (дождь, снегопад, туман), уменьшающих прозрачность среды. Надежность в таких случаях обеспечивают за счет многократного превышения энергиии луча над минимальным пороговым значением, необходимым для срабатывания датчика. Источником помех может быть также прямая засветка приемника солнечными лучами. Чаще сего это случается на закате или рассвете, когда солнце стоит низко над горизонтом. Согласно рссийским стандартам датчик должен сохранять работоспособность при естественной освещенности не менее 10000 лк и не менее 500 лк —от электрических осветительных приборов. Большинство современных отечественных и зарубежных лучевых датчиков имеют специальные средства фильтрации фонового излучения и отвечают указанным выше требованиям. Однако для обеспечения высокой помехозащищенности от засветки очень важно правильно юстировать датчик при его настройке и выполнять все рекомендации изготовителя по монтажу. Кроме того, ИК системы могут срабатывать при попадании в луч птиц, листьев и веток деревьев или др. Для повышения устойчивости и надежности ИК-лучевых систем их делают многолучевыми (обычно используют 2 или 4 независимых луча), а также применяют схемы автоматической обработки сигналов, минимизирующие влияние внешней среды. Специальные меры принимают для согхранения работоспособности датчиков в зимних условиях, при возможности обмерзания или налипания снега на оптические поверхности блоков. Достаточно надежными методами борьбы с указанными явлениями служат специальные козырьки на оптических фильтрах и внутренние обогреватели оптико-электронных блоков. Одними из самых распространенных отечественных ИК-лучевых охранных приборов являются извещатели серии СПЭК. Комплект СПЭК-75 содержит блок излучателя, блок фотоприемника и комплект для монтажа. Система обеспечивает угол расходимости оптического пучка 3 градуса и позволяет организовать однолучевой рубеж охраны длиной до 75 м (на улице). Излучатель генерирует в диапазоне ближнего ИК-спектра на длине волны 0,8...0,9 мкм, сигнал тревоги включается при прерывании луча на заданный промежуток времени. Для обеспечения работы в неблагоприятных условиях (дождь, снегопад, туман) излучатель имеет 100-кратный запас по мощности излучения. Приняты меры для исключения ложных срабатываний от солнечной засветки (10000 лк). Электронные блоки идентичны по конструкции, они имеют размеры 140 х 145 х 65 мм. Для юстировки системы можно использовать специально подключаемый для этой цели вольтметр. Номинальное напряжение питания -12 В, потребляемый ток — не более 60 мА. Диапазон рабочих температур от -40О до +50ОС. Для организации двухлучевого барьера используют второй комплект извещателя. Выпускаются также модификации серии СПЭК для зон охраны до 175 метров. Более совершенным и мощным является отечественный ИК-лучевой извещатель “Рубеж-3М”. Комплект включает две пары приемо-передающих блоков, управляемых общим блоком контроля. В приборе применена импульсная модуляция ИК-излучения и синхронный прием, что позволило повысить дальность действия и реализовать параллельную работу нескольких излучателей в многолучевых барьерах. Комплект позволяет организовать двухлучевой контур охраны на длине участка 300 м или два отдельных однолучевых рубежа на длине до 600 м. С помощью двух комплектов Рубеж-3М можно также создать 4-лучевой барьер с повышенной помехозащищенностью. Система работоспособна даже при густом тумане, когда “метеорологическая дальность видимости” уменьшается до 180 м. Аппаратура выдает сигнал тревоги, если луч перекрывается на время не менее 100 миллисекунд, что соответствует движению человека со скоростью до 5 метров в секунду (18 км/час). Блоки излучателя и фотоприемника системы Рубеж-3М помещены в идентичные металлические корпуса, укрепляемые на поворотных кронштейнах. Габаритные размеры блока (с кронштейном) — 275 х 190 х 120 мм. Внутри блоков имеются устройства подогрева, что обеспечивает работоспособность при температуре до -45ОС. На неогороженных территориях блоки устанавливают на специальных стойках. Минимальная рекомендуемая высота луча над землей — 0,3 м, что позволяет обнаружить ползущего нарушителя. При наличии оград блоки обычно укрепляют вдоль верхнего края ограды. Практически все зарубежные ИК-лучевые охранные приборы объединяют в общем корпусе двухлучевую или четырехлучевую синхронную систему. На российском рынке широко представлены ИК-лучевые датчки фирм C&K, Atsumi, Visonic, Optex, Alarmcom и др. На фото 1 показана конструкция одного из блоков двухлучевого ИК датчика серии АХ-100/АХ-200 фирмы Optex (Япония). По конструкции блоки передатчика и приемника аналогичны. Лицевая крышка выполнена из ударопрочного пластика, прозрачного только для ИК-излучения. Крышка имеет специальный выступающий козырек, препятствующий осаждению инея на наружной поверхности. Под крышкой находится электронно-оптический блок с двумя линзами, смонтированными на поворотной платформе. Угловое положение платформы регулируется при юстировке в пределах (+/-90О) по горизонтали и (+/- 5О) по вертикали винтами. Для облегчения юстировки в поворотную платформу встроен специальный миниатюрный видоискатель, позволяющий точно навести линзы на второй блок системы. Для точной юстировки системы по уровню принимаемого сигнала в блоке приемника имеются гнезда для подключения вольтметра. Здесь же расположены регулятор времени срабатывания датчика и светодиодные индикаторы (“грубая настройка” и “тревога”), используемые при настройке прибора. Оптико-электронный блок фиксируется на монтажной плате, которую обычно крепят к вертикальной штанге с помощью хомута. Регулятор допустимого времени перекрытия лучей, установленный в блоке приемника, позволяет изменять время срабатывания от 500 миллисекунд (сравнительно медленное перелезание через ограду) до 50 миллисекунд (очень быстро бегущий человек). Обычно рекомендуется устанавливать время пересечения луча не более 70-100 мс, чтобы обеспечить достаточную чувствительность системы. Датчики серии АХ фирмы OPTEX обеспечивают дальность обнаружения от 22 до 150 метров на улице и от 40 до 300 метров в помещении. Для питания используется источник постоянного тока с напряжением 10,5...28 В, потребляемый ток — не более 46 мА, диапазон рабочих температур от -35О до +55ОС при влажности до 95%. Фото 1. Лучевой ИК-датчик серии АХ фирмы Optex. Для объектов с высокой степенью защиты иногда применяют ИК-лучевые системы с числом лучей от 4-х до 8-ми. Среди таких многолучевых систем можно упомянуть датчик IPS 600 фирмы GPS (Италия), датчики серии IS 400 фирмы Alarmcom (Швейцария) или датчики серии IPID фирмы ECSI (США). Конструктивно многолучевые ИК датчики обычно выполняют в виде вертикальных штанг высотой примерно до 3,5 метров. Многолучевые системы используют чаще всего для охраны военных объектов, объектов атомной энергетики, крупных промышленных предприятий. 1.2. Пассивные ИК системы Такие “однопозиционные” системы представляют собой пассивные ИК-детекторы с пространственной диаграммой чувствительности в виде луча. Они проще в монтаже и настройке, чем двухпозционные ИК-лучевые системы и используются в основном там, где нужно перекрыть короткие участки периметра — зоны въезда транспорта, разрывы в ограждениях, ворота, оконные проемы и т.п. Для таких датчиков характерно большее поперечное сечение чувствительной зоны, чем для лучевых оптических датчиков. Пассивные ИК барьеры IS 402 и IS 412 фирмы Alarmcom (Швейцария) предназначены для уличной эксплуатации в сложных атмосферных условиях. Датчик IS 402 (фото 2) выполнен в прочном алюминиевом корпусе с козырьком, защищающим от солнечной засветки. Датчик IS 402 формирует зону чувствительности в виде “занавеса” длиной 100 м и высотой до 4 м. Датчик IS 412 имеет повышенную чувствительность и обеспечивает зону длиной 150 м. Фото 2. Пассивный ИК-датчик IS 402 фирмы Alarmcom Однопозиционные пассивные ИК-датчики для охраны периметров выпускает английская компания Security Enclosures Ltd (SEL). В открытом пространстве датчик Redwall-100Q, использующий технологию “квадруплексного” (четырехканального) детектирования, обеспечивает зону чувствительности длиной 100 м и поперечным сечением 3 м. Усовершенствованный двухсекционный датчик Megared-180Q (фото 3а) позволяет защищать зону длиной до 180 м. Одна из секций датчика предназначена для детектирования в “ближней” зоне, а другая — в “дальней”. Сигналы от секций датчика можно использовать, например, для управления поворотной видеокамерой. Одна из модификаций детектора фирмы SEL — комбинированный датчик Redwatch-100Q — объединяет в себе пассивный ИК-датчик и встроенную миниатюрную видеокамеру, поле зрения которой совпадает с чувствительной зоной ИК-датчика (фото 3б). Возможность оперативной визуальной проверки ситуации в “тревожной” зоне сильно повышает общую эффективность охраны.
Фото 3а. Пассивный ИК-датчик Megared-180Q фирмы SEL Фото 3б. Комбинированный ИК-датчик Redwatch-100Q со встроенной видеокамерой

Для повышения устойчивости к внешним факторам и снижения частоты ложных срабатываний периметральные ИК-детекторы иногда конструктивно объединяют с СВЧ-датчиками. Примером такого комбинированного прибора (иногда их назывют датчиками двойной технологии) является детектор серии DT-900 фирмы C&K (фото 4). Два канала обнаружения — пассивный инфракрасный и радиоволновой — позволяют обеспечить высокую обнаруживающую способность при хорошей устойчивости к помехам. Датчик снабжен тройной системой самодиагностики; он имеет специальный активный оптический датчик, сигнализирующей о попытке умышленной блокировки прибора путем перекрытия чувствительной зоны. Микропрцессор с памятью событий позволяет выбирать оптимальный аглгоритм обнаружения вторжения в различных окружающих условиях. В зависимости от используемой фокусирующей оптики дальность действия датчика составляет 37 м (сечение зоны 3 м) или 61 м (сечение 5 м).


Фото 4. Датчик двойной технологии (ИК+СВЧ) серии DT-900 фирмы C&K

Оптоволоконные системы

Оптоволоконные кабели, используемые обычно для передачи информации, можно использовать также и в качестве датчиков для периметральных охранных систем. Деформация оптоволоконного кабеля изменяет его оптические параметры (показатель преломления и др.) и, как следствие, характеристики прошедшего через волокно лазерного излучения. В силу специфики используемых физических принципов оптоволоконные системы отличаются очень малой восприимчивостью к любым электромагнитным помехам, что позволяет использовать их в неблагоприятной электрофизической обстановке.

Оптоволоконные кабели проявляют несколько физических эффектов, позволяющих применять их в качестве периметральных датчиков. Во всех случаях к одному концу кабеля подключен миниатюрный полупроводниковый лазер, генерирующий когерентное излучение. Противоположный конец кабеля состыкован с фотодиодом (приемником), преобразущим оптический сигнал в электрический. Анализатор сравнивает принимаемый сигнал с эталонным, который соответствует невозмущенному состоянию сенсора, и детектирует внешние воздействия на периметр (смещения, вибрации или сжатия кабеля).

В охранной системе Model M106E фирмы Fiber SenSys (США) используется метод регистрации межмодовой интерференции. Лазер излучает несколько десятков близких по частоте мод (спектральных линий) с определенным распределением энергии по спектру. Если оптоволоконный кабель подвергается механическим воздействиям, то на его выходе регистрируемый приемником спектр излучения меняется, что позволяет детектировать деформации кабеля.

В оптоволоконной системе фирмы Sabreline (США) используется эффект изменения распределения излучения по поперечному сечению при деформации волокна. На выходе многомодового оптоволокна наблюдается так называемая “спекл-структура” (speckle-structure), представляющая собой нерегулярную систему светлых и темных пятен. Для детектирования деформаций кабеля здесь применяют пространственно-чувствительные фотоприемники.

Оптоволоконные системы серии FOIDS (изготовитель фирма Mason & Hanger, США) используют принцип двухлучевой интерферометрии. Луч лазера расщепляется на два и направляется в два идентичных одномодовых оптических кабеля, один из которых является детектирующим, а другой — опорным. На приемном конце оба луча образуют интерференционную картину. Механические воздействия на детектирующий кабель приводят к изменениям интерференционной картины, которые регистриуются фотоприемником.

Интересной особенностью оптоволоконных систем является возможность их применения для защиты не только оград, но и неогражденных территорий. В последнем случае волокно располагают под поверхностью земли, в канавке, заполненной гравием. При этом, как показали испытания в Sandia National Laboratories (США), система способна регистрировать шаги идущего или бегущего человека.

Среди отечественных разработок оптоволоконных периметральных систем можно отметить систему “Ворон”. Основой системы являются серийно выпускаемые извещатели, состоящие из двух герметичных блоков — лазерного передатчика и фотоприемника. Между этими блоками располагается чувствительный элемент — специальный оптоволоконный кабель. Обработка сигналов осуществляется с помощью анализатора или с помощью специального обучаемого процессора, использующего принципы искусственного интеллекта. Обучение процессора происходит после монтажа на конкретном объекте с имитацией реальных сигналов вторжения.

К ограничениям применения оптоволоконных систем можно отнести сложность процедуры сращивания и ремонта кабелей в полевых условиях (требуется применение микроскопа и дорогостоящего устройства для сварки волокон). Опыт практического применения оптоволоконных периметральных систем сравнительно невелик, но потенциальные тактико-технические характеристики таких приборов в части невосприимчивости к электромагнитным помехам вызывают серьезный интерес.