Consumable electrode methods
Aluminum
The voidability of aluminum alloys varies significantly, depending on the chemical composition of the alloy used. Aluminum alloys are susceptible to hot cracking, and to combat the problem, welders increase the welding speed to lower the heat input. Preheating reduces the temperature gradient across the weld zone and thus helps reduce hot cracking, but it can reduce the mechanical properties of the base material and should not be used when the base material is restrained. The design of the joint can be changed as well, and a more compatible filler alloy can be selected to decrease the likelihood of hot cracking. Aluminum alloys should also be cleaned prior to welding, with the goal of removing all oxides, oils, and loose particles from the surface to be welded. This is especially important because of an aluminum weld's susceptibility to porosity due to hydrogen and dross due to oxygen.
Underwater welding
While many welding applications are done in controlled environments such as factories and repair shops, some welding processes are commonly used in a wide variety of conditions, such as open air, underwater, and vacuums (such as space). In open-air applications, such as construction and outdoors repair, shielded metal arc welding is the most common process. Processes that employ inert gases to protect the weld cannot be readily used in such situations, because unpredictable atmospheric movements can result in a faulty weld. Shielded metal arc welding is also often used in underwater welding in the construction and repairs of ships, offshore platforms, and pipelines, but others, such as flux cored arc welding and gas tungsten arc welding, are also common. Welding in space is also possible — it was first attempted in 1969 by Russian cosmonauts, when they performed experiments to test shielded metal arc welding, plasma arc welding, and electron beam welding in a depressurized environment. Further testing of these methods was done in the following decades, and today researchers continue to develop methods for using other welding processes in space, such as laser beam welding, resistance welding, and friction welding.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1
Факультет: АТС (СП) Вопрос: 2
Welding
Welding is a fabrication or sculptural process that joins materials, usually metals or thermoplastics, by causing coalescence. This is often done by melting the workpieces and adding a filler material to form a pool of molten material (the weld pool) that cools to become a strong joint, with pressure sometimes used in conjunction with heat, or by itself, to produce the weld. This is in contrast with soldering and brazing, which involve melting a lower-melting-point material between the workpieces to form a bond between them, without melting the workpieces.
Many different energy sources can be used for welding, including a gas flame, an electric arc, a laser, an electron beam, friction, and ultrasound. While often an industrial process, welding can be done in many different environments, including open air, under water and in outer space. Regardless of location, however, welding remains dangerous, and precautions must be taken to avoid burns, electric shock, eye damage, poisonous fumes, and overexposure to ultraviolet light. Until the end of the 19th century, the only welding process was forge welding, which blacksmiths had used for centuries to join metals by heating and pounding them. Arc welding and oxyfuel welding were among the first processes to develop late in the century, and resistance welding followed soon after. Welding technology advanced quickly during the early 20th century as World War I and World War II drove the demand for reliable and inexpensive joining methods. Following the wars, several modern welding techniques were developed, including manual methods like shielded metal arc welding, now one of the most popular welding methods, as well as semi-automatic and automatic processes such as gas metal arc welding, submerged arc welding, flux-cored arc welding and electroslag welding. Developments continued with the invention of laser beam welding and electron beam welding in the latter half of the century. Today, the science continues to advance.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2
Факультет: АТС (СП) Вопрос: 1
Cutting
For cutting, the set-up is a little different. A cutting torch has a 60 or 90-degree angled head with orifices placed around a central jet. The outer jets are for preheat flames of oxygen and acetylene. The central jet carries only oxygen for cutting. The use of a number of preheating flames, rather than a single flame makes it possible to change the direction of the cut as desired without changing the position of the nozzle or the angle which the torch makes with the direction of the cut, as well as giving a better preheat balance. Manufacturers have developed custom tips for Mapp, propane, and polypropylene gases to optimize the flames from these alternate fuel gases.
The flame is not intended to melt the metal, but to bring it to its ignition temperature. The torch's trigger blows extra oxygen at higher pressures down the torch's third tube out of the central jet into the workpiece, causing the metal to burn and blowing the resulting molten oxide through to the other side. The ideal kerf is a narrow gap with a sharp edge on either side of the workpiece; overheating the workpiece and thus melting through it causes a rounded edge.
Cutting is initiated by heating the edge or leading face (as in cutting shapes such as round rod) of the steel to the ignition temperature (approximately bright cherry red heat) using the pre-heat jets only, then using the separate cutting oxygen valve to release the oxygen from the central jet. The oxygen chemically combines with the iron in the ferrous material to instantly oxidize the iron into molten iron oxide, producing the cut. Initiating a cut in the middle of a workpiece is known as piercing. It is worth noting several things at this point:
The oxygen flowrate is critical — too little will make a slow ragged cut; too much will waste oxygen and produce a wide concave cut. Oxygen Tances and other custom made torches do not have a separate pressure control for the cutting oxygen, so the cutting oxygen pressure must be controlled using the oxygen regulator. The oxygen cutting pressure should match the cutting tip oxygen orifice.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2
Факультет: АТС (СП) Вопрос: 2
Consumable electrode methods
One of the most common types of arc welding is shielded metal arc welding (SMAW), which is also known as manual metal arc welding (MMA) or stick welding. An electric current is used to strike an arc between the base material and a consumable electrode rod or 'stick'. The electrode rod is made of a material that is compatible with the base material being welded and is covered with a flux that protects the weld area from oxidation and contamination by producing C02 gas during the welding process. The electrode core itself acts as filler material, making separate filler unnecessary. The process is very versatile, requiring little operator training and inexpensive equipment. However, weld times are rather slow, since the consumable electrodes must be frequently replaced and because slag, the residue from the flux, must be chipped away after welding. Furthermore, the process is generally limited to welding ferrous materials, though specialty electrodes have made possible the welding of cast iron, nickel, aluminium, copper and other metals. The versatility of the method makes it popular in a number of applications including repair work and construction.
Gas metal arc welding (GMAW) is a semi-automatic or automatic welding process that uses a continuous wire feed as an electrode and an inert or semi-inert shielding gas to protect the weld from contamination. When using an inert gas as shield it is known as Metal Inert Gas (MIG) welding. A constant voltage, direct current power source is most commonly used with GMAW, but constant current .systems as well as alternating current can be used. GMAW welding speeds are relatively high due to the automatically fed continuous electrode, but is less versatile because it requires more equipment than the simpler SMAW process.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3
Факультет: АТС (СП) Вопрос: 1
Types of flame
The welder can adjust the oxy-acetylene flame to be carbonizing (aka reducing), neutral, or oxidizing. Adjustment is made by adding more or less oxygen to the acetylene flame. The neutral flame is the flame most generally used when welding or cutting. The welder uses the neutral flame as the starting point for all other flame adjustments because it is so easily defined. This flame is attained when welders, as they slowly open the oxygen valve on the torch body, first see only two flame zones. At that point, the acetylene is being completely burned in the welding oxygen and surrounding air. The flame is chemically neutral. The two parts of this flame are the light blue inner cone and the darker blue to colorless outer cone. The inner cone is where the acetylene and the oxygen combine. The tip of this inner cone is the hottest part of the flame. It is approximately 6,000 °F (3,300 °C) and provides enough heat to easily melt steel. In the inner cone the acetylene breaks down and partly burns to hydrogen and carbon monoxide, which in the outer cone combine with more oxygen from the surrounding air and burn.
An excess of acetylene creates a carbonizing flame. This flame is characterized by three flame zones: the hot inner cone, a white-hot "acetylene feather", and the blue-colored outer cone. This is the type of flame observed when oxygen is first added to the burning acetylene. The feather is adjusted and made ever smaller by adding increasing amounts of oxygen to the flame. A welding feather is measured as 2X or 3X, with X being the length of the inner flame cone. The unburned carbon insulates the flame and drops the temperature to approximately 5,000 °F (2,800 °C). The reducing flame is typically used for hardfacing operations or backhand pipe welding techniques. The feather is caused by incomplete combustion of the acetylene to cause an excess of carbon in the flame. Some of this carbon is dissolved by the molten metal to carbonize it. The carbonizing flame will tend to remove the oxygen from iron oxides which may be present, a fact which has caused the flame to be known as a "reducing flame".
The oxidizing flame is the third possible flame adjustment. It occurs when the ratio of oxygen to acetylene required for a neutral flame has been changed to give an excess of oxygen. This flame type is observed when welders add more oxygen to the neutral flame.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3
Факультет: АТС (СП) Вопрос: 2
Safety issues
Welding can be a dangerous and unhealthy practice without the proper •precautions; however, with the use of new technology and proper protection the risks of injury or death associated with welding can be greatly reduced.
Because many common welding procedures involve an open electric arc or flame, the risk of burns is significant. To prevent them, welders wear protective clothing in the form of heavy leather gloves and protective long sleeve jackets to avoid exposure to extreme heat, flames, and sparks.
The brightness of the weld area leads to a condition called arc eye in which ultraviolet light causes inflammation of the cornea and can burn the retinas of the eyes. Goggles and helmets with dark face plates are worn to prevent this exposure and, in recent years, new helmet models have been produced featuring a face plate that self-darkens upon exposure to high amounts of UV light. To protect bystanders, transparent welding curtains often surround the welding area. These curtains, made of a polyvinyl chloride plastic film, shield nearby workers from exposure to the UV light from the electric arc, but should not be used to replace the filter glass used in helmets.
Those dark face plates must be much darker than those in sunglasses or blowtorching goggles. Sunglasses and blowtorching goggles are not adequate for arc welding protection.
In 1970, a Swedish doctor, Ake Sanden, developed a new type of welding goggles that used a multilayer interference filter to block most of the light from the arc. He had observed that most welders could not see well enough, with the mask on, to strike the arc, so they would flip the mask up, then flip it down again once the arc was going: this exposed their naked eyes to the intense light for a while. By coincidence, the spectrum of an electric arc has a notch in it, which coincides with the yellow sodium line. Thus, a welding shop could be lit by sodium vapor lamps or daylight, and the welder could see well to strike the arc.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 4
Факультет: АТС (СП) Вопрос: 1
Costs and trends
As an industrial process, the cost of welding plays a crucial role in manufacturing decisions. Many different variables affect the total cost, including equipment cost, labor cost, material cost, and energy cost. Depending on the process, equipment cost can vary, from inexpensive for methods like shielded metal arc welding and oxyfuel welding, to extremely expensive for methods like laser beam welding and electron beam welding. Because of their high cost, they are only used in high production operations. Similarly, because automation and robots increase equipment costs, they are only implemented when high production is necessary. Labor cost depends on the deposition rate (the rate of welding), the hourly wage, and the total operation time, including both time welding and handling the part. The cost of materials includes the cost of the base and filler material, and the cost of shielding gases. Finally, energy cost depends on arc time and welding power demand.
For manual welding methods, labor costs generally make up the vast majority of the total cost. As a result, many cost-savings measures are focused on minimizing the operation time. To do this, welding procedures with high deposition rates can be selected, and weld parameters can be fine-tuned to increase welding speed. Also, removal of welding spatters generated during welding process is highly labor intensive and time consuming. Implementation of Welding Anti Spatter & Flux which is safe and non-polluting is considered as a welcome change in cost cutting and weld joint quality improvement measures. Mechanization and automation are often implemented to reduce labor costs, but this frequently increases the cost of equipment and creates additional setup time. Material costs tend to increase when special properties are necessary, and energy costs normally do not amount to more than several percent of the total welding cost.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 4
Факультет: АТС (СП) Вопрос: 2
Quality
Engineers prefer GTAW welds because of its low-hydrogen properties and the match of mechanical and chemical properties with the base material. Maximum weld quality is assured by maintaining the cleanliness of the operation — all equipment and materials used must be free from oil, moisture, dirt and other impurities, as these cause weld porosity and consequently a decrease in weld strength and quality. To remove oil and grease, alcohol or similar commercial solvents may be used, while a stainless steel wire brush or chemical process can remove oxides from the surfaces of metals like aluminum. Rust on steels can be removed by first grit blasting the surface and then using a wire brush to remove any embedded grit. These steps are especially important when negative polarity direct current is used, because such a power supply provides no cleaning during the welding process, unlike positive polarity direct ' current or alternating current. To maintain a clean weld pool during welding, the shielding gas flow should be sufficient and consistent so that the gas covers the weld and blocks impurities in the atmosphere. GTA welding in windy or drafty environments increases the amount of shielding gas necessary to protect the weld, increasing the cost and making the process unpopular outdoors.
Low heat input, caused by low welding current or high welding speed, can limit penetration and cause the weld bead to lift away from the surface being welded. If there is too much heat input, however, the weld bead grows in width while the likelihood of excessive penetration and spatter increase. Additionally, if the welder 'holds the welding torch too far from the workpiece, shielding gas is wasted and the appearance of the weld worsens.
If the amount of current used exceeds the capability of the electrode, tungsten inclusions in the weld may result. Known as tungsten spitting, it can be identified with radiography and prevented by changing the type of electrode or increasing the electrode diameter.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 5
Факультет: АТС (СП) Вопрос: 1
Operation
Manual gas tungsten arc welding is often considered the most difficult of all the welding processes commonly used in industry. Because the welder must maintain a short arc length, great care and skill are required to prevent contact between the electrode and the workpiece. Unlike most other welding processes, GTAW normally requires two hands, since most applications require that the welder manually feed a filler metal into the weld area with one hand while manipulating the welding torch in the other. However, some welds combining thin materials (known as autogenous or fusion welds) can be accomplished without filler metal; most notably edge, corner, and butt joints. To strike the welding arc, a high frequency generator provides a path for the welding current through the shielding gas, allowing the arc to be struck when the separation between the electrode and the workpiece is approximately 1.5-3 mm (0.06-0.12 in). Bringing the two into contact in a "touch start" ("scratch start") also serves to strike an arc. This technique can cause contamination of the weld and electrode. Once the arc is struck, the welder moves the torch in a small circle to create a welding pool, the size of which depends on the size of the electrode and the amount of current. While maintaining a constant separation between the electrode and the workpiece, the operator then moves the torch back slightly and tilts it backward about 10-15 degrees from vertical. Filler metal is added manually to the front end of the weld pool as it is needed. Welders often develop a technique of rapidly alternating between moving the torch forward (to advance the weld pool) and adding filler metal. The filler rod is withdrawn from the weld pool each time the electrode advances, but it is never removed from the gas shield to prevent oxidation of its surface and contamination of the weld. Filler rods composed of metals with low melting temperature, such as aluminum, require that the operator maintain some distance from the arc while staying inside the gas shield.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 5
Факультет: АТС (СП) Вопрос: 2
Flux-cored arc welding
Flux-cored arc welding (FCAW) is a semi-automatic or automatic arc welding process. FCAW requires a continuously-fed consumable tubular electrode containing a flux and a constant-voltage or, less commonly, a constant-current welding power supply. An externally supplied shielding gas is sometimes used, but often the flux itself is relied upon to generate the necessary protection from the atmosphere. The process is widely used in construction because of its high welding speed and portability.
FCAW was first developed in the early 1950s as an alternative to shielded metal arc welding (SMAW). The advantage of FCAW over SMAW is that the use of the stick electrodes used in SMAW is unnecessary. This helped FCAW to overcome many of the restrictions associated with SMAW.
Two Types of FCAW
One type of FCAW requires no shielding gas. This is made possible by the flux core in the tubular consumable electrode. However, this core contains more than just flux; it also contains various ingredients that when exposed to the high temperatures of welding generate a shielding gas for protecting the arc. This type of FCAW is attractive because it is portable and generally has good penetration into the base metal. Also, windy conditions need not be considered. Some disadvantages are that this process can produce excessive, noxious smoke (making it difficult to see the weld pool); under some conditions it can produce welds with inferior mechanical properties; the slag is often difficult and time-consuming to remove; and operator skill can be a major factor.
Another type of FCAW uses a shielding gas that must be supplied by an external supply. This is known informally as "dual shield" welding. This type of FCAW was developed primarily for welding structural steels. In fact, since it uses both a flux-cored electrode and an external shielding gas, one might say that it is a combination of gas metal (GMAW) and flux-cored arc welding (FCAW). This particular style of FCAW is preferable for welding thicker and out-of-position metals.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 6
Факультет: АТС (СП) Вопрос: 1
Electrode
The electrode used in GTAW is made of tungsten or a tungsten alloy, because tungsten has the highest melting temperature among pure metals, at 3,422 °C (6,192 °F). As a result, the electrode is not consumed during welding, though some erosion (called burn-off) can occur. Electrodes can have either a clean finish or a ground finish—clean finish electrodes have been chemically cleaned, while ground finish electrodes have been ground to a uniform size and have a polished surface, making them optimal for heat conduction. The diameter of the electrode can vary between 0.5 millimeter and 6.4 millimeters (0.02-0.25 in), and their length can range from 75 to 610 millimeters (3-24 in).
A number of tungsten alloys have been standardized by the International Organization for Standardization and the American Welding Society in ISO 6848 and AWS A5.12, respectively, for use in GTAW electrodes, and are summarized in the adjacent table. Pure tungsten electrodes (classified as WP or EWP) are general purpose and low cost electrodes. Cerium oxide (or ceria) as an alloying element improves arc stability and ease of starting while decreasing burn-off. Using an alloy of lanthanum oxide (or lanthana) has a similar effect. Thorium oxide (or thoria) alloy electrodes were designed for DC applications and can withstand somewhat higher temperatures while providing many of the benefits of other alloys. However, it is somewhat radioactive. Inhalation of the thorium grinding dust during preparation of the electrode is hazardous to one's health. As a replacement to thoriated electrodes, electrodes with larger concentrations of lanthanum oxide can be used. Electrodes containing zirconium oxide (or zirconia) increase the current capacity while improving arc stability and starting and increasing electrode life. In addition, electrode manufacturers may create alternative tungsten alloys with specified metal additions, and these are designated with the classification EWG under the AWS system. Filler metals are also used in nearly all applications of GTAW, the major exception being the welding of thin materials. Filler metals are available with different diameters and are made of a variety of materials.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 6
Факультет: АТС (СП) Вопрос: 2
Spot welding
Spot welding is a process in which contacting metal surfaces are joined by the heat obtained from resistance to electric current flow. Work-pieces are held together under pressure exerted by electrodes. Typically the sheets are in the 0.5-3.0 mm thickness range. The process uses two shaped copper alloy electrodes to concentrate welding current into a small "spot" and to simultaneously clamp the sheets together. Forcing a large current through the spot will melt the metal and form the weld. The attractive feature of spot welding is a lot of energy can be delivered to the spot in a ■very short time (ten to one hundred milliseconds). That permits the welding to occur without excessive heating to the rest of the sheet. The amount of heat (energy) delivered to the spot is determined by the resistance between the electrodes and the amplitude and duration of the current. The amount of energy is chosen to match the • sheet's material properties, its thickness, and type of electrodes. Applying too little energy won't melt the metal or will make a poor weld. Applying too much energy will melt too much metal and make a hole rather than a weld. Another attractive feature of spot welding is the energy delivered to the spot can be controlled to produce reliable welds.
Applications
Spot welding is typically used when welding particular types of sheet metal. Thicker stock is more difficult to spot weld because the heat flows into the surrounding metal more easily. Spot welding can be easily identified on many sheet ■metal goods, such as metal buckets. Aluminum alloys can also be spot welded. However, their much higher thermal conductivity and electrical conductivity mean that up to three times higher welding currents are needed. This requires larger, more powerful, and more expensive welding transformers. Perhaps the most common application of spot welding is in the automobile manufacturing industry, where it is used almost universally to weld the sheet metal to form a car.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 7
Факультет: АТС (СП) Вопрос: 1
Electrical notes
The basic spot welder consists of a power supply, an energy storage unit (e.g., a capacitor bank), a switch, a welding transformer, and the welding electrodes. The energy storage element allows the welder to deliver high instantaneous power levels. If the power demands are not high, then the energy storage element isn't needed. The switch causes the stored energy to be dumped into the welding transformer. The welding transformer steps down the voltage and steps up the current. An important feature of the transformer is it reduces the current level that the switch must handle. The welding electrodes are part of the transformer's secondary circuit. There is also a control box that manages the switch and may monitor the welding electrode voltage or current.
The resistance presented to the welder is complicated. There is the resistance of secondary winding, the cables, and the welding electrodes. There is also the contact resistance between the welding electrodes and the workpiece. There is the resistance of the workpieces, and the contact resistance between the workpieces.
At the beginning of the weld, the contact resistances are usually high, so most of the initial energy will be dissipated there. That heat and the clamping force will soften and smooth out the material at the electrode-material interface and make better contact (that is, lower the contact resistance). Consequently, more electrical energy will go into the workpiece and the junction resistance of the two workpieces. As electrical energy is delivered to the weld and causes the temperature to rise, the electrodes and the workpiece are conducting that heat away. The goal is to apply enough energy so that a portion of material within the spot melts without having the entire spot melt. The perimeter of the spot will conduct away a lot of heat and keep the perimeter at a lower temperature. The interior of the spot has less heat conducted away, so it melts first. If the welding current is applied too long, the entire spot melts, the material runs out or otherwise fails, and the "weld" becomes a hole.
The voltage needed for welding depends on the resistance of the material to be welded, the sheet thickness and desired size of the nugget. When welding a common combination like 1.0 + 1.0 mm sheet steel, the voltage between the electrodes is only about 1.5 V at the start of the weld but can fall as low as 1 V at the end of the weld. This decrease in voltage results from the reduction in resistance caused by the workpiece melting. The open circuit voltage from the transformer is higher than this, typically in the 5-10 V range, but there is a large voltage drop in the electrodes and secondary side of the transformer when the circuit is closed.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 7
Факультет: АТС (СП) Вопрос: 2
Welder
A welder (also weldor, which term distinguishes the tradesman from the equipment used to make welds) is a tradesman who specialises in welding materials together. The materials to be joined can be metals (such as steel, aluminum, brass, stainless steel etc.) or varieties of plastic or polymer. Welders typically have to have good dexterity and attention to detail, as well as some technical knowledge about the materials being joined and best practices in the field.
Safety issues
Welding, without the proper precautions appropriate for the process, can be a dangerous and unhealthy practice. However, with the use of new technology and proper protection, the risks of injury and death associated with welding can be greatl; reduced. Because many common welding procedures involve an open electric arc or flame, the risk of burns is significant. To prevent them, welders wear personal protective equipment in the form of heavy leather gloves and protective long sleeve jackets to avoid exposure to extreme heat and flames. Additionally, the brightness of the weld area leads to a condition called arc eye in which ultraviolet light causes the inflammation of the cornea and can burn the retinas of the eyes. Goggles and welding ' helmets with dark face plates are worn to prevent this exposure, and in recent years, new helmet models have been produced that feature a face plate that self-darkens upon exposure to high amounts of UV light. To protect bystanders, opaque welding curtains often surround the welding area. These curtains, made of a polyvinyl chlorid plastic film, shield nearby workers from exposure to the UV light from the electric ai but should not be used to replace the filter glass used in helmets. Welders are also often exposed to dangerous gases and particulate matter.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 8
Факультет: АТС (СП) Вопрос: 1
Processing and Equipment
Spot welding involves three stages; the first of which involves the electrodes being brought to the surface of the metal and applying a slight amount of pressure. The current from the electrodes is then applied briefly after which the current is removed but the electrodes remain in place in order for the material to cool. Weld times range from 0.01 sec to 0.63 sec depending on the thickness of the metal, the electrode force and the diameter of the electrodes themselves.
The equipment used in the spot welding process consists of tool holders and electrodes. The tool holders function as a mechanism to hold the electrodes firmly in place and also support optional water hoses which cool the electrodes during welding. Tool holding methods include a paddle-type, light duty, universal, and regular offset. The electrodes generally are made of a low resistance alloy, usually copper, and are designed in many different shapes and sizes depending on the application needed. The two materials being welded together are known as the workpieces and must conduct electricity. The width of the workpieces is limited by the throat length of the welding apparatus and ranges typically from 5 to 50 inches. Workpiece thickness can range from O.OOSin. to 1.25in.
After the current is removed from the workpiece, it is cooled via the coolant holes in the center of the electrodes. Both water and a brine solution may be used as coolants in spot welding mechanisms.
Tool Styles
Electrodes used in spot welding can vary greatly with different applications. Each tool style has a different purpose. Radius style electrodes are used for high heat applications, electrodes with a truncated tip for high pressure, eccentric electrodes for welding corners, offset eccentric tips for reaching into corners and small spaces, and finally offset truncated for reaching into the workpiece itself.
Effects
The spot welding process tends to harden the material, cause it to warp, reduce the materials fatigue strength, and may stretch the material as well as anneal it. The physical effects of spot welding include internal cracking, surface cracks and a bad appearance. The chemical properties affected include the metal's internal resistance and its corrosive properties.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 8
Факультет: АТС (СП) Вопрос: 2
Welding power supply
A welding power supply is a device that provides an electric current to perform welding. Welding usually requires high current (over 80 amperes) and it can need above 12,000 amps in spot welding. Low current can also be used; welding two razor blades together at 5 amps with gas tungsten arc welding is a good example. A welding power supply can be as simple as a car battery and as sophisticated as a modern machine based on silicon controlled rectifier technology with additional logic to assist in the welding process.
Classification
Welding machines are usually classified as constant current (CC) or constant voltage (CV); a constant current machine varies its output voltage to maintain a steady current while a constant voltage machine will fluctuate its output current to maintain a set voltage. Shielded metal arc welding will use a constant current source and gas metal arc welding and flux-cored arc welding typically use constant voltage sources but constant current is also possible with a voltage sensing wire feeder.
The nature of the CV machine is required by gas metal arc welding and flux-cored arc welding because the welder is not able to control the arc length manually. If a welder attempted to use a CV machine to weld with shielded metal arc welding the small fluctuations in the arc distance would cause wide fluctuations in the machine's output. With a CC machine the welder can count on a fixed number of amps reaching the material to be welded regardless of the arc distance but too much distance will cause poor welding.
Most welding machines are of the following designs:
Transformer
A transformer style welding machine converts the high voltage and low current electricity from the utility into a high current and low voltage, typically between 17 to 45 volts and 55 to 590 amps. This type of machine typically allows the welder to select the output current by either moving a magnetic shunt in and out of the core of the transformer or by allowing the welder to select from a set of taps on the transformer. These machines are typically the least expensive to purchase for hobbyist use.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 9
Факультет: АТС (СП) Вопрос: 1
Submerged arc welding
Submerged arc welding (SAW) is a common arc welding process. It requires a continuously fed consumable solid or tubular (flux cored) electrode. The molten weld and the arc zone are protected from atmospheric contamination by being "submerged" under a blanket of granular fusible flux consisting of lime, silica, manganese oxide, calcium fluoride, and other compounds. When molten, the flux becomes conductive, and provides a current path between the electrode and the work. This thick layer of flux completely covers the molten metal thus preventing spatter and sparks as well as suppressing the intense ultraviolet radiation and fumes that are a part of the SMAW (shielded metal arc welding) process. SAW is normally operated in the automatic or mechanized mode, however, semi-automatic (hand-held) SAW guns with pressurized or gravity flux feed delivery are available. The process is normally limited to the Flat or Horizontal-Fillet welding positions (although Horizontal Groove position welds have been done with a special arrangement to support the flux). Single or multiple (2 to 5) electrode wire variations of the process exist. SAW strip-cladding utilizes a flat strip electrode (e.g. 60 mm wide x 0.5 mm thick). DC or AC power can be utilized, and combinations of DC and AC are common on multiple electrode systems. Constant Voltage welding power supplies are most commonly used, however Constant Current systems in combination with a voltage sensing wire-feeder are available.
Advantages
• High deposition rates (over 100 lb/h (45 kg/h) have been reported).
• High operating factors in mechanized applications.
• Deep weld penetration.
• Sound welds are readily made (with good process design and control).
• High speed welding of thin sheet steels up to 5 m/min (16 ft/min) is possible.
• Minimal welding fume or arc light is emitted.
• Practically no edge preparation is necessary.
• The process is suitable for both indoor and outdoor works.
• Distortion is much less.
• Welds produced are sound, uniform, ductile, and corrosion resistant and have good impact value.
• Single pass welds can be made in thick plates with normal equipment.
• The arc is always covered under a blanket of flux, thus there is no chance of spatter of weld.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 9
Факультет: АТС (СП) Вопрос: 2
Robot welding
Robot welding is the use of mechanized programmable tools (robots), which completely automate a welding process by both performing the weld and handling the part. Processes such as gas metal arc welding, while often automated, are not necessarily equivalent to robot welding, since a human operator sometimes prepares the materials to be welded. Robot welding is commonly used for resistance spot welding and arc welding in high production applications, such as the automotive industry. Robot welding is a relatively new application of robotics, even though robots were first introduced into US industry during the 1960s. The use of robots in welding did not take off until the 1980s, when the automotive industry began using robots extensively for spot welding. Since then, both the number of robots used in industry and the number of their applications has grown greatly. Cary and Helzer suggest that, as of 2005, more than 120,000 robots are used in North American industry, about half of them pertaining to welding. Growth is primarily limited by high equipment costs, and the resulting restriction to high-production applications.
Robot arc welding has begun growing quickly just recently, and already it commands about 20% of industrial robot applications. The major components of arc welding robots are the manipulator or the mechanical unit and the controller, which acts as the robot's "brain". The manipulator is what makes the robot move, and the design of these systems can be categorized into several common types, such as the SCARA robot and Cartesian coordinate robot, which use different coordinate systems to direct the arms of the machine.
The technology of signature image processing has been developed since the late 1990s for analyzing electrical data in real time collected from automated, robotic welding, thus enabling the optimization of welds.
Заведующий кафедрой
общеобразовательных дисциплин
____________ В.П. Павлов
Уфимский государственный Кафедра общеобразовательных
авиационный технический дисциплин
университет
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 10
Факультет: АТС (СП) Вопрос: 1