Вопрос №2. Поле в диэлектриках

Лекция №5

Электростатическое поле в веществе.

План лекции:

1. Классификация диэлектриков. Явление поляризации диэлектриков. Вектор поляризации.

2. Электростатическое поле в диэлектрике. Диэлектрическая проницаемость.

3. Условия на границе раздела двух диэлектрических сред. Вектор электрического смещения.

4. Изотропные и анизотропные диэлектрики.

5. Сегнетоэлектрики, пьезоэлектрический эффект.

Вопрос №1. Классификация диэлектриков

 

Вещество независимо от его природы и агрегатного состояния (газ, жидкость, твердое тело), помещенное во внешнее электрическое или магнитное поле, претерпевает определенные изменения. Это приводит к возникновению ряда явлений, которые в свою очередь изменяют поле как внутри этого вещества, так и за его пределами.

По отношению к действию электростатического поля все вещества можно разделить на проводники, полупроводники и диэлектрики. Характерным признаком проводников является наличие в них так называемых свободных носителей заряда, которыми являются электроны в металлах (проводники первого рода), ионы в электролитах (проводники второго рода), электроны и ионы в ионизованных газах и плазме. Под действием электрического поля эти заряды способны перемещаться по проводникам и тем самым создавать электрический ток, т.е. поток зарядов того или иного знака.

Диэлектрики, состоящие из нейтральных атомов или молекул, практически не содержат свободных носителей заряда и потому плохо проводят электрический ток, т.е. являются в обычных условиях изоляторами. В зависимости от химического соста­ва и строения различают полярные и неполярные диэлектрики, а также ионные кри­сталлические диэлектрикиисегнетоэлектрики.

 

Вопрос №2. Поле в диэлектриках

В природе, т.е. в естественных условиях, а также в техни­ческих устройствах электрическое поле чаще существует в диэлектрической среде (газ, жидкость, твердое тело), чем в вакууме.

Собственное электрическое поле в диэлек­трической среде создается зарядами (электронами и протонами), которые принадлежат отдельным нейтральным микрочастицам (атомам и молекулам в полярных или непо­лярных диэлектриках и сегнетоэлектриках) или ионам (в случае ионных кристалличе­ских диэлектриков).

Поэтому элементарные заряды микрочастиц не могут свободно перемещаться в объеме диэлектрика, их называют связанными зарядами (в отличие от свободных зарядов в проводниках). Связанные заряды находятся в непрерывном внутримолекулярном движении, которое накладывается на хаотическое (тепловое) движение атомов, молекул и ионов. Их результирующее микроскопическое поле ока­зывается очень сложным, причем оно сильно меняется на расстояниях порядка моле­кулярных размеров. Однако при решении многих практических задач достаточно рас­смотреть поля, усредненные по объемам, которые содержат достаточно большое количество частиц диэлектрической среды.

Структура таких «сглаженных» полей, называемых макроскопическими, намного проще, а описывающие их уравнения и законы не очень сильно отличаются от анало­гичных зависимостей и соотношений для электростатических полей в вакууме. Пред­положим, что электростатическое поле в вакууме создано двумя бесконечными пла­стинами (рис. 1, а), которым сообщены равные по величине и противоположные по знаку заряды (q+=q-=q), т.е. мы имеем дело с полем плоского конденсатора в ва­кууме. Если пренебречь краевыми эффектами, то напряженность Е0 практически од­нородного электрического поля внутри конденсатора можно выразить через разность потенциалов обкладок конденсатора (Е = -grad φ):

(1.1)

Далее, не изменяя величины заряда q, заполним диэлектриком пространство меж­ду обкладками конденсатора, например установим стеклянную или пластмассовую пластинку толщиной h = d (рис. 1,б).

 

 
 
Рис.1

 


Эксперименты, в ходе которых измеряли раз­ность потенциалов в среде, показывают, что всегда наблюдается ее уменьшение по сравнению с Δφ в вакууме. В результате поле Евнутри диэлектрика будет меньше, чем в случае вакуума:

(1.2)

Величина ε, которая показывает, во сколько раз ослаблено электростатическое поле в объеме вещества, называется диэлектрической проницаемостью этого мате­риала. Соотношение (1.2) справедливо только для рассмотренного здесь случая, ко­гда диэлектрик заполняет все пространство плоского конденсатора (рис. 1).

Следует отметить, что определить экспериментально значение напряженности Е поля в диэлектрической среде по действующей на пробный заряд q силе F = qE до­вольно сложно, особенно если диэлектрик твердый (это возможно при изучении полей в вакууме или газообразной среде). В этом случае напряженность Е можно определить посредством измерения разности потенциалов (по формуле Е = Δφ / d), что обеспечи­вает высокую точность и не нарушает структуру диэлектрика.