Достоинства и недостатки электромагнитных реле
Электромагнитное реле обладает рядом преимуществ, отсутствующих у полупроводниковых конкурентов:
- способность коммутации нагрузок мощностью до 4 кВт при объеме реле менее 10 см3;
- устойчивость к импульсным перенапряжениям и разрушающим помехам, появляющимся при разрядах молний и в результате коммутационных процессов в высоковольтной электротехнике;
- исключительная электрическая изоляция между управляющей цепью (катушкой) и контактной группой;
- малое падение напряжения на замкнутых контактах, и, как следствие, малое выделение тепла: при коммутации тока 10 А малогабаритное реле суммарно рассеивает на катушке и контактах менее 0,5 Вт;
- низкая цена электромагнитных реле по сравнению с полупроводниковыми ключами.
Недостатки реле: малая скорость работы, ограниченный (хотя и очень большой) электрический и механический ресурс, создание радиопомех при замыкании и размыкании контактов.
Условные обозначения реле в схемах | 1 – обмотка реле (управляющая цепь), 2 – контакт замыкающий, 3 – контакт размыкающий, 4 – контакт, замыкающий с замедлителем при срабатывании, 5 – контакт замыкающий с замедлителем при возврате, 6 – контакт импульсный замыкающий, 7 – контакт замыкающий без самовозврата, 8 – контакт размыкающий без самовозврата, 9 – контакт размыкающий с замедлителем при срабатывании, 10 – контакт размыкающий с замедлителем при возврате. |
Схема включения
Принципиальная схема включения вторичного реле максимального тока прямого действия приведена на рис. 59. Обмотка реле 1, подключенная к вторичной обмотке трансформатора тока 5, обтекается вторичным током и отделена от высокого напряжения и токоведущих частей.
При увеличении тока в реле до тока срабатывания якорь 2 преодолевает усилие пружины 6, втягивается и ударяет бойком 3 по защелке 4, удерживающей механизм привода выключателя во включенном положении. Защелка, поворачиваясь, освобождает механизм привода выключателя, который отключается под действием пружины 7. После отключения выключателя прохождение тока в обмотке реле прекращается и сердечник с бойком и защелка возвращаются в исходное положение. | Принципиальная схема включения реле |
Таким образом реле при срабатывании производит непосредственное отключение выключателя путем механического воздействия на его привод, развивая при этом значительное усилие порядка 4,9—9,8 Н и более. Для создания такого усилия реле потребляет от трансформаторов тока большую мощность.
Реле времени создает выдержку временив системе автоматического регулирования. Многодиапазонное реле времени, предназначено для коммутации электрических цепей с определенными, предварительно установленными выдержками времени, применяется в системах управления объектами народного хозяйства. Выдержка времени– это интервал времени от момента подачи напряжения на обмотку реле до момента изменения положения его контактов. | Реле времени | ||
Исполнительные механизмы.
Исполнительные механизмы предназначены для перемещения регулирующих органов в соответствии с командными сигналами, поступающими от регулирующих и управляющих устройств.
Исполнительные механизмы классифицируют по ряду признаков:
– по виду используемой энергии: электрические, пневматические, гидравлические и комбинированные;
– по конструктивному исполнению: мембранные и поршневые;
– по характеру обратной связи — периодического и непрерывного действия.
Электрическим исполнительным механизмом в системах управленияназывают устройство, предназначенное для перемещения рабочего (регулирующего) органа в соответствии с сигналами, поступающими от управляющего устройства.
Как электрические исполнительные механизмы с контактным управлением, так и бесконтактные можно подразделять также по следующим признакам.
По назначению: с вращательным движением выходного вала — однооборотные; с вращательным движением выходного вала — многооборотные; с поступательным движением выходного вала — прямоходные.
Выходной вал однооборотных исполнительных механизмов может вращаться в пределах одного полного оборота. Такие механизмы характеризуются величиной крутящего момента на выходном валу и временем его полного оборота. В отличие от однооборотных многооборотные механизмы, выходной вал которых может осуществлять перемещение в пределах нескольких, иногда значительного количества, оборотов, характеризуются также полным числом | Электрический исполнительный механизм | ||||||
оборотов выходного вала. | |||||||
ВНЕШНИЙ ВИД | НАИМЕНОВАНИЕ | ПРИНЦИП РАБОТЫ | НАЗНАЧЕНИЕ | ||||
Механизм электрический исполнительный однооборотный МЭО | Преобразование электрического командного сигнала поступающего от регулирующего или управляющего устройство во вращательное перемещение выходного вала | ||||||
Механизм электрический исполнительный многооборотный МЭМ | Преобразование электрического командного сигнала во вращательное перемещение выходного органа механизма. | ||||||
Состоит из следующих основных частей:
Червячно-цилиндрического редуктора электродвигателя, блока сигнализации положения, панели, интенсивного разъема, рычага и ручного привода.
Движение от электродвигателя передается на выходной вал через цилиндрическую или червячную зубчатые передачи редуктора. Редуктор является основным узлом, на котором устанавливаются составные части механизма. В корпусе редуктора размещены многоступенчатая цилиндрическая передача, устройство для ручного управления механизмом и механическое тормозное устройство ( далее тормоз). Вращательное движение передается с вала электродвигателя через полумуфту, тормоз и ряд ступеней цилиндрической передачи на выходной вал. Ручное управление перемещением выходного вала механизмов осуществляется вращением ручки ручного привода. Для ограничения величины выбега выходного вала и предотвращения перемещения его от усилия регулирующего органа при отсутствии напряжения на двигателе в механизмах предусмотрен механический тормоз .
Привод к блоку сигнализации положения происходит от выходного вала. Блок сигнализации положения служит для преобразования положения выходного органа механизма в пропорциональный электрический сигнал, а также для сигнализации и блокирования в крайних или промежуточных положениях выходного органа. В состав блока входят два основных узла:блок микропереключателей и узел датчика.Для подключения внешних электрических цепей служит штепсельный разъем.
На МЭО предусмотрен маховик для ручного воздействия на рычаг.
Механизмы исполнительные электрические
Пневматические и гидравлические исполнительные механизмы,использующие энергию сжатого воздуха и минеральных масел (несжимаемой жидкости), делят на самостоятельные и на работающие совместно с усилителями. Принцип действия этих двух видов механизмов схож между собой.К самостоятельным механизмам относят цилиндры с поршнем и штоком одно- и двустороннего действия.По виду используемой энергии исполнительные механизмы делятся на пневматические, гидравлические и электрические. Пневматические исполнительные механизмы бывают мембранными и поршневыми.
Мембранный исполнительный механизмсостоит из корпуса головки 1, мембраны из прорезиненной ткани 2, металлического диска 3, штока. 4, жестко соединенного с диском, и пружины 5.
1 – корпус головки, 2 – мембрана, 3 – диск, 4 – шток, 5 – пружина | 1 – цилиндр, 2 – поршень, 3 - шток |
Схема мембранного и поршневого исполнительных механизмов
При отключении регулируемой величины от заданного значения давление воздуха Р, поступающего от пневматического регулятора в полость над мембраной и диском, изменяется. Шток перемещается либо вниз (при увеличении давления), либо вверх (при уменьшении давления). Шток, связанный с регулирующим органом (РО) непосредственно или через рычаг, перемещает его в новое положение.
В тех случаях, когда мембранный исполнительный механизм предназначен для управления регулирующим клапаном, их конструктивно объединяют.
Поршневой исполнительный механизмсостоит из цилиндра 1 с поршнем 2, шток которого 3 соединяется с регулирующим органом (РО). В зависимости от того, в какую полость цилиндра (А или Б) будет поступать управляющий сигнал от регулятора, поршень со штоком будет перемещаться либо вправо, либо влево.
Пневматические средства управления и регулирования удовлетворяют самым жёстким требованиям пожаро- и взрывобезопасности, могут работать в системах газоснабжения и применяются для автоматизации производственных процессов.
Рис. 82. Схема пневматического мембранного исполнительного механизма а) – односедельный; б) – двухседельный | Принцип действия мембранного исполнительного механизма заключается в том, что под действием давления воздуха Р, подаваемого на мембранный механизм сверху, шток, преодолевая противодействие пружины, изменяет положение затвора, тем самым изменяя проходное сечение клапана. Степень открытия сечения клапана пропорциональна давлению воздуха Р, подаваемого на мембранный механизм. По своей конструкции подобные клапаны выпускают двух типов: одно- и двухседельные. |
Односедельные клапаны имеют одностороннее действие давления среды. Оно выражается в "затягивании" или "отжатии" самого седла при изменении направления движения среды через регулирующий орган. Такой эффект является нежелательным, так как нарушает процесс регулирования. Для устранения этого используют двухседельный клапан, которые считаются разгруженными.
Гидравлические исполнительные механизмыпредназначены для преобразования сигнала, поступающего от гидравлического регулятора в перемещение регулирующего органа. Выпускается два типа гидравлических исполнительных механизмов: прямого хода и кривошипные. По принципу действия они аналогичны пневматическому поршневому исполнительному механизму.
Регулирующие органы