Метод вращения монокристалла

Содержание

Введение………………………………………………………………………..
Метод Лауэ…………………………………………………………………….
Метод вращения монокристалла……………………………………………..
Метод порошка………………………………………………………………..
Техника безопасности…………………………………………………………
Заключение……………………………………………………………………
Список использованной литературы…………………………………………

 

Введение

В рентгеноструктурном анализе в основном используются три метода

1. Метод Лауэ. В этом методе пучок излучения с непрерывным спектром падает на неподвижный монокристалл. Дифракционная картина регистрируется на неподвижную фотопленку.

2. Метод вращения монокристалла. Пучок монохроматического излучения падает на кристалл, вращающийся (или колеблющийся) вокруг некоторого кристаллографического направления. Дифракционная картина регистрируется на неподвижную фотопленку. В ряде случаев фотопленка движется синхронно с вращением кристалла; такая разновидность метода вращения носит название метода развертки слоевой линии.

3. Метод порошков или поликристаллов (метод Дебая-Шеррера-Хэлла). В этом методе используется монохроматический пучок лучей. Образец состоит из кристаллического порошка или представляет собой поликристаллический агрегат.

Развитие полупроводниковой электроники привело к широкому применению полупроводниковых соединений различных кристаллохимических групп, поскольку существует связь между кристаллической структурой полупроводника и его свойствами. Взаимодействие соединений друг с другом приводит к образованию твёрдых растворов, что позволяет путём изменения состава раствора получать материалы с требуемыми свойствами.

Полупроводниковые соединения представляют собой фазы переменного состава, в связи с чем их свойства чувствительны к условиям получения и обработки кристаллов. Это осложняет и поведение примесей в полупроводниковых соединениях. С одной стороны, требуется создание материалов с определённым сочетанием различных свойств (электрических или оптических) при одновременно высокой степени однородности распределения примесей, а следовательно, и свойств в объёме полупроводника. С другой стороны атомы примесей, взаимодействуя с собственными точечными дефектами полупроводника, изменяют его электрические и оптические свойства. Это делает необходимым предварительное исследование систем полупроводник – примесь в различных физико-химических условиях.

 

 

Метод Лауэ

 

Метод Лауэ применяется на первом этапе изучения атомной структуры кристаллов. С его помощью определяют сингонию кристалла и лауэвский класс (кристаллический класс Фриделя с точностью до центра инверсии). По закону Фриделя никогда невозможно обнаружить отсутствие центра симметрии на лауэграмме и поэтому добавление центра симметрии к 32-м кристаллическим классам уменьшает их количество до 11. Метод Лауэ применяется главным образом для исследования монокристаллов или крупнокристаллических образцов. В методе Лауэ неподвижный монокристалл освещается параллельным пучком лучей со сплошным спектром. Образцом может служить как изолированный кристалл, так и достаточно крупное зерно в поликристаллическом агрегате.

Формирование дифракционной картины происходит при рассеянии излучения с длинами волн от l min = l 0 = 12,4/U , где U - напряжение на рентгеновской трубке, до l m - длины волны, дающей интенсивность рефлекса (дифракционного максимума), превышающую фон хотя бы на 5 %. l m зависит не только от интенсивности первичного пучка (атомного номера анода, напряжения и тока через трубку), но и от поглощения рентгеновских лучей в образце и кассете с пленкой. Спектру l min - l m соответствует набор сфер Эвальда с радиусами от 1/ l m до 1/l min , которые касаются узла 000 и ОР исследуемого кристалла (рис.1).

Рис. 1

 

Тогда для всех узлов ОР, лежащих между этими сферами, будет выполняться условие Лауэ (для какой-то определенной длины волны в интервале (l m ¸ l min ) ) и, следовательно, возникает дифракционный максимум - рефлекс на пленке. Для съемки по методу Лауэ применяется камера РКСО (рис.2).

 

Рис. 2 Камера РКСО

Здесь пучок первичных рентгеновских лучей вырезается диафрагмой 1 с двумя отверстиями диаметрами 0,5 - 1,0 мм. Размер отверстий диафрагмы подбирается таким образом, чтобы сечение первичного пучка было больше поперечного сечения исследуемого кристалла. Кристалл 2 устанавливается на гониометрической головке 3, состоящей из системы двух взаимно перпендикулярных дуг. Держатель кристалла на этой головке может перемещаться относительно этих дуг, а сама гониометрическая головка может быть повернута на любой угол вокруг оси, перпендикулярной к первичному пучку. Гониометрическая головка позволяет менять ориентацию кристалла по отношению к первичному пучку и устанавливать определенное кристаллографическое направление кристалла вдоль этого пучка. Дифракционная картина регистрируется на фотопленку 4, помещенную в кассету, плоскость которой расположена перпендикулярно к первичному пучку. На кассете перед фотопленкой натянута тонкая проволока, расположенная параллельно оси гониометрической головки. Тень от этой проволоки дает возможность определить ориентацию фотопленки по отношению к оси гониометрической головки. Если образец 2 располагается перед пленкой 4, то рентгенограммы, полученные таким образом называются лауэграммами. Дифракционная картина, регистрируемая на фотопленку, расположенную перед кристаллом, называется эпиграммой. На лауэграммах дифракционные пятна располагаются по зональным кривым (эллипсам, параболам, гиперболам, прямым). Эти кривые являются сечениями дифракционных конусов плоскостью и касаются первичного пятна. На эпиграммах дифракционные пятна располагаются по гиперболам, не проходящим через первичный луч.

Для рассмотрения особенностей дифракционной картины в методе Лауэ пользуются геометрической интерпретацией с помощью обратной решетки. Лауэграммы и эпиграммы являются отображением обратной решетки кристалла. Построенная по лауэграмме гномоническая проекция позволяет судить о взаимном расположении в пространстве нормалей к отражающим плоскостям и получить представление о симметрии обратной решетки кристалла. По форме пятен лауэграммы судят о степени совершенства кристалла. Хороший кристалл дает на лауэграмме четкие пятна. Симметрию кристаллов по лауэграмме определяют по взаимному расположению пятен (симметричному расположению атомных плоскостей должно отвечать симметричное расположение отраженных лучей). (См. рис. 3)

Рис. 3 Схема съемки рентгенограмм по методу Лауэ (а – на просвет, б – на отражение, F – фокус рентгеновской трубки, К – диафрагмы, O – образец, Пл - пленка)

 

Метод вращения монокристалла

Метод вращения является основным при определении атомной структуры кристаллов. Этим методом определяют размеры элементарной ячейки, число атомов или молекул, приходящихся на одну ячейку. По погасаниям отражений находят пространственную группу (с точностью до центра инверсии). Данные по измерению интенсивности дифракционных максимумов используют при вычислениях, связанных с определением атомной структуры. При съемке рентгенограмм методом вращения кристалл вращается или покачивается вокруг определенного кристаллографического направления при облучении его монохроматическим или характеристическим рентгеновским излучением. Первичный пучок вырезается диафрагмой (с двумя круглыми отверстиями) и попадает на кристалл. Кристалл устанавливается на гониометрической головке так, чтобы одно из его важных направлений (типа [100], [010], [001]) было ориентировано вдоль оси вращения гониометрической головки. Гониометрическая головка представляет собой систему двух взаимно перпендикулярных дуг, которая позволяет устанавливать кристалл под нужным углом по отношению к оси вращения и к первичному пучку рентгеновских лучей. Гониометрическая головка приводится в медленное вращение через систему шестерен с помощью мотора. Дифракционная картина регистрируется на фотопленке, расположенной по оси цилиндрической поверхности кассеты определенного диаметра (86,6 или 57,3 мм).

При отсутствии внешней огранки ориентация кристаллов производится методом Лауэ. Для этой цели в камере вращения предусмотрена возможность установки кассеты с плоской пленкой. Дифракционные максимумы на рентгенограмме вращения располагаются вдоль прямых, называемых слоевыми линиями. Максимумы на рентгенограмме располагаются симметрично относительно вертикальной линии, проходящей через первичное пятно. Часто на рентгенограммах вращения наблюдаются непрерывные полосы, проходящие через дифракционные максимумы. Появление этих полос обусловлено присутствием в излучении рентгеновской трубки непрерывного спектра наряду с характеристическим.

При вращении кристалла вокруг главного кристаллографического направления вращается связанная с ним обратная решетка. При пересечении узлами обратной решетки сферы распространения возникают дифракционные лучи, располагающиеся по образующим конусов, оси которых совпадают с осью вращения кристалла. Все узлы обратной решетки, пересекаемые сферой распространения при ее вращении, составляют эффективную, область, т.е. определяют область индексов дифракционных максимумов, возникающих от данного кристалла при его вращении. Для установления атомной структуры вещества необходимо индицирование рентгенограмм вращения. Индицирование обычно проводится графически с использованием представлений обратной решетки. Методом вращения определяют периоды решетки кристалла, которые вместе с определенными методом Лауэ углами позволяют найти объем элементарной ячейки. Используя данные о плотности, химическом составе и объеме элементарной ячейки, находят число атомов в элементарной ячейке.

Метод порошка

 

При обычном методе исследования поликристаллических материалов тонкий столбик из измельченного порошка или другого мелкозернистого материала освещается узким пучком рентгеновских лучей с определенной длиной волны. Картина дифракции лучей фиксируется на узкую полоску фотопленки, свернутую в виде цилиндра, по оси которого располагается исследуемый образец. Сравнительно реже применяется съемка на плоскую фотографическую пленку.

Принципиальная схема метода дана на рис. 4.

Рис. 4 Принципиальная схема съемки по методу порошка: