Описание и устройство датчиков

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Новосибирский государственный технический университет

Кафедра систем сбора и обработки данных

 

КУРСОВАЯ РАБОТА

по дисциплине «Робототехнические системы и комплексы»

 

Лабораторный практикум: «Сенсорные системы: ультрафиолетовый датчик»

 

 

Факультет: АВТ Преподаватель: Першина Ж. С.

Группа: АТ-13

Студент: Цой А.Г.

Отметка о защите:

________________

 

Новосибирск 2014

Содержание

 

Введение

. Принцип работы

. Описание и устройство датчиков

. Конкретные примеры использования датчиков

. Освещение лестницы в двух- и многоэтажном доме

. Управление освещением в подсобном помещении

. Освещение автомобильной стоянки

. Различия датчиков движения

Заключение

Список литературы

 


Введение

 

Датчик движения - это пироэлектрический детектор, служащий приемником волн инфракрасного диапазона. Из курса физики мы знаем, что любое тело, нагретое до определенной температуры, начинает излучать ИК волны. То есть, принцип работы датчика движения основан на регистрации инфракрасных волн, которые исходят от тела человека.

В быту чаще всего под этим термином подразумевается электронный инфракрасный датчик, обнаруживающий присутствие и перемещение человека, и коммутирующий питание электроприборов (чаще всего освещения). Иногда датчиками движения ошибочно называют акселерометры; в действительности акселерометры не могут почувствовать прямолинейное равномерное движение, зато чувствуют ориентацию относительно вертикальной оси даже в полном покое.

Датчики движения - это простой и удобный способ решения проблем связанных с охраной и освещением, а также другими задачами которые требуют бесконтактного воздействия. Любой электрический прибор можно заставить реагировать на появление человека в зоне охвата датчика и также заставить прекратить свою работу при его исчезновении.

Кроме своих охранных функций датчик также несет и большую экономическую функцию. Например, освещение будет только тогда, когда вам это нужно, свет не будет больше гореть впустую. Камеры видеонаблюдения будут снимать только при появлении в зоне датчика человека, а это значит, что впустую камера больше записывать не будет.

Датчик может быть использован совместно с другими датчиками и приборами, что повышает качество выполнения определенной задачи.

 


(Рисунок 1 - датчик движения)

 

Принцип работы

 

Принцип работы основан на отслеживании уровня инфракрасного (ИК) излучения в поле зрения датчика (сенсора), чаще всего, пироэлектрического. Сенсор - это первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.

Другими словами, сенсор - это строительный элемент, который служит для электрического измерения неэлектрических величин. Сигнал на выходе датчика монотонно зависит от уровня ИК излучения, усредненного по полю зрения датчика. При появлении человека (или другого массивного объекта с температурой большей, чем температура фона) на выходе пироэлектрического датчика повышается напряжение (Рисунок 2). Для того чтобы определить, движется ли объект, в датчике используется оптическая система - линза Френеля. Иногда вместо линзы Френеля используется система вогнутых сегментных зеркал. Сегменты оптической системы (линзы или зеркала) фокусируют ИК-излучение на пироэлементе, выдающем при этом электроимпульс. По мере перемещения источника ИК-излучения, оно улавливается и фокусируется разными сегментами оптической системы, что формирует несколько последовательных импульсов. В зависимости от установки чувствительности датчика, для выдачи итогового сигнала на пироэлемент датчика должно поступить 2 или 3 импульса.

 

(Рисунок 2 - принцип работы датчика)

 

Описание и устройство датчиков

 

Датчики движения и датчики присутствия реагируют на появление или исчезновение ИК-света на фотоэлементе, являющимся основой этих устройств. Эти факторы, прежде всего связаны с деятельностью человека, гораздо реже - воздействием тепловых излучений, вырабатываемые бытовыми приборами, что приводит к ошибочным срабатываниям датчиков. Например: распознать человека на фоне теплых полов датчик практически не может. По физической природе, ИК-излучение и видимый свет одинаковы. При попадании ИК-света на линзу, фотоэлемент меняет свои параметры. Яркость ИК-света зависит от температуры тела человека (чем горячее, тем светится ярче, чем холоднее - тем свечение становится слабее). Поэтому ИК-излучение человеческого тела самое значительное и распознается датчиком мгновенно. Датчики движения менее чувствительны, усилительный тракт фотоэлемента ограничен в тепловой восприимчивости. Поэтому, они реагируют только на движущегося человека.

В центре устройства, на котором размещена схема обработки сигналов (Рисунок 3), находится приемник ИК-света (точнее пироэлектрический ИК-датчик). Основная линза (линза Френеля) состоит из множества маленьких линз, каждая из которых фокусирует ИК-свет на плоскость фотоэлемента (Рисунок 4), а одна из них непосредственно на сам фотоэлемент и происходит регистрация сигналов. Во время движения человека, на какое-то время фокус линзы смещается с фотоэлемента и сигнал пропадает. Другая линза фокусирует ИК-свет человека и сигнал вновь появляется. Каждая из линз охватывает свой сегмент, поэтому сигнал пропадает при выходе человека из зоны этого сегмента. Поэтому чем больше линза, тем больше чувствительность этого датчика. При удалении от датчика размер сегмента увеличивается, все незначительные движения будут находится в зоне только одного сегмента.

 

(Рисунок 3 - Схема обработки сигналов)

 

Активная зона (выделена голубым цветом). Инфракрасное излучение из этой области регистрируется пиродетектором.

Пассивная зона (выделена серым цветом). Её пиродетектор не учитывает. Сегмент охвата (выделен фигурной скобкой): активная и пассивная зоны.

Для того, чтобы движение человека вызывало колебания инфракрасного излучения, воспринимаемого пиродетектором, область охвата должна быть разделена на отдельные зоны сегментными линзами. Детектор обнаруживает воздействующие на сегменты движение источника тепла как колебания ИК излучения на границе зон и посылает соответствующий импульс.

 

(Рисунок 4 - Линза Френнеля)