ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПРИ ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ
КАФЕДРА
«Безопасность жизнедеятельности»
Автор: преподаватель Павлова В.Л.
МЕТОДИЧЕСКИЕ УКАЗАНИЯ по выполнению
лабораторных работ по дисциплине «Безопасность жизнедеятельности»
МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ «ЗАЩИТА ОТ ТЕПЛОВОГО ИЗЛУЧЕНИЯ»
Новосибирск
Цель лабораторной работы- ознакомить студентов с теорией теплового излучения, физической сущностью и инженерным расчетом теплоизоляции, с приборами для измерения тепловых потоков, нормативными требованиями к тепловому излучению, провести измерения интенсивности тепловых излучений в зависимости от расстояния до источника и оценить эффективность защиты от теплового излучения с помощью экранов и воздушной и водной завесы.
ОБЩИЕ СВЕДЕНИЯ
Лучистый теплообмен между телами представляет собой процесс распространения внутренней энергии, которая излучается в виде электромагнитных волн в видимой и инфракрасной (ИК) области спектра. Длина волны видимого излучения - от 0,38 до 0,77 мкм, инфракрасного - более 0,77 мкм. Такое излучение называется тепловым или лучистым.
Воздух прозрачен (диатермичен) для теплового излучения, поэтому температура воздуха не повышается при прохождении через него лучистого тепла. Тепловые лучи поглощаются предметами, нагревают их и они становятся излучателями тепла. Воздух, соприкасаясь с нагретыми телами, также нагревается и температура воздушной среды в производственных помещениях возрастает.
Интенсивность теплового излучения может быть определена по формуле:
Q= 0,78 F-[(T°/100) 4 -110J/12 (1)
где Q - интенсивность теплового излучения, Вт/м2; F - площадь излучающей поверхности, м2; Т°~ температура излучающей поверхности, "К; /-расстояние от излучающей поверхности, м.
Из формулы (1) следует, что количество лучистого тепла, поглощаемого телом человека, зависит от температуры источника излучения, площади излучающей поверхности и квадрата расстояния между излучающей поверхностью и телом человека.
Тепловой обмен организма человека с окружающей средой заключается во взаимосвязи между образованием тепла (термогенезом) в результате жизнедеятельности организма и отдачей им этого тепла во внешнюю среду. Отдача тепла осуществляется, в основном, тремя способами: конвекцией, излучением и испарением.
Передача тепла ИК-излучением является наиболее эффективным способом теплоотдачи и составляет в комфортных метеоусловиях 44-59 % общей теплоотдачи. Тело человека излучает в диапазоне длин волн от 5 до 25 мкм с максимумом энергии на длине волны 9,4 мкм.
В производственных условиях, когда работающий человек окружен предметами, имеющими температуру, отличную от температуры тела человека, соотношение способов теплоотдачи может существенно изменяться. Отдача человеческим телом тепла во внешнюю среду возможна лишь тогда, когда температура окружающих предметов ниже температуры тела человека. В обратном случае направление потока лучистой энергии меняется на противоположное и уже тело человека будет получать извне дополнительную тепловую энергию. Воздействие ИК лучей приводит к перегреву организма и тем быстрее, чем больше мощность излучения, выше температура и влажность воздуха в рабочем помещении, выше интенсивность выполняемой работы.
Инфракрасное (ИК) излучение, помимо усиления теплового воздействия окружающей среды на организм работающего, обладает специфическим влиянием. С гигиенической точки зрения важной особенностью ИК-излучения является его способность проникать в живую ткань на разную глубину.
Лучи длинноволнового диапазона (от 3 мкм до 1 мм) задерживаются в поверхностных слоях кожи уже на глубине 0,1 - 0,2 мм. Поэтому их физиологическое воздействие на организм проявляется, главным образом, в повышении температуры кожи и перегреве организма.
Лучи коротковолнового диапазона (от 0,78 до 1,4 мкм) обладают способностью проникать в ткани человеческого организма на несколько сантиметров. Такое ИК-излучение легко проникает через кожу и черепную коробку в мозговую ткань и может воздействовать на клетки головного мозга, вызывая его тяжелые поражения. В частности, ИК-излучение может привести к возникновению специфического заболевания - теплового удара, проявляющегося в головной боли, головокружении, учащении пульса, ускорении дыхания, падении сердечной деятельности, потере сознания и др.
При облучении коротковолновыми ИК-лучами наблюдается повышение температуры легких, почек, мышц и других органов. В крови, лимфе, спинномозговой жидкости появляются специфические биологически активные вещества, наблюдаются нарушения обменных процессов, изменяются функциональное состояние центральной нервной системы.
Интенсивность теплового облучения человека регламентируется, исходя из субъективного ощущения человеком энергии облучения. Согласно ГОСТ 12.1.005-88 интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов не должна превышать: 35 Вт/м2 при облучении более 50 % поверхности тела; 70 Вт/м2 при облучении от 25 до 50 % '' поверхности тела; 100 Вт/м2 - при облучении не более 25 % поверхности тела. От открытых источников (нагретые металл и стекло, открытое пламя) интенсивность теплового облучения не должна превышать 140 Вт/м2 при облучении не более 25 % поверхности тела и обязательном использовании средств индивидуальной защиты, в том числе средств защиты лица и глаз.
Нормы ограничивают также температуру нагретых поверхностей оборудования в рабочей зоне, которая не должна превышать 45 °С, а для оборудования, внутри которого температура близка к 100 °С , температура на его поверхности должна быть не выше 35 °С.
В производственных условиях не всегда возможно выполнить нормативные требования. В этом случае должны быть предусмотрены мероприятия по защите работающих от возможного перегрева: дистанционное управление ходом технологического процесса; воздушное или водо-воздушное душирование рабочих мест; устройство специально оборудованных комнат, кабин или рабочих мест для кратковременного отдыха с подачей в них кондиционированного воздуха; использование защитных экранов, водяных и воздушных завес; применение средств индивидуальной защиты; спецодежды, спецобуви и др.
Одним из самых распространенных способов борьбы с тепловым излучением является экранирование излучающих поверхностей. Различают экраны трех типов: непрозрачные, прозрачные и полупрозрачные.
В непрозрачных экранах поглощаемая энергия электромагнитных колебаний, взаимодействуя с веществом экрана, превращается в тепловую энергию. При этом экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника. К непрозрачным экранам относятся, например, металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др.
В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Так ведут себя экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы.
Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой.
По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие и теплоотводящие. Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.
Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.
Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.
В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др.
Оценить эффективность защиты от теплового излучения с помощью экранов можно по формуле:
п= (Q- Q3)/ Q *100% (2)
где Q - интенсивность теплового излучения без применения защиты, Вт/м2; Q3 - интенсивность теплового излучения с применением защиты, Вт/м .
При устройстве общеобменной вентиляции, предназначенной для удаления избытка явного тепла, объем приточного воздуха Lnp (м3/ч) определяют по формуле:
Lnp=Qизб /(Туд-Тпр)пр с (3)
где Qизб- избыток явного тепла, кДж/ч;
ТУд - температура удаляемого воздух°С;
Тпр - температура приточного воздуха °С;
пр - плотность приточного воздуха, кг/ м3;
с - удельная теплоемкость воздуха, кДж/кг град.
Температуру воздуха, удаляемого из помещения, определяют по формуле:
Туд = Трз+Т(Н-2), (4)
где Трз - температура в рабочей зоне, которая не должна превышать установленную санитарными нормами, °С;
T - температурный градиент по высоте помещения, °С/м; (обычно 0,5 - 1,5 °С/м);
H- расстояние от пола до центра вытяжных проемов, м;
2 - высота рабочей зоны, м.
Если количество образующихся тепловыделений незначительно или не может быть точно определено, то общеобменную вентиляцию рассчитывают по кратности воздухообмена п, которая показывает, сколько раз в течение часа происходит смена воздуха в помещении (обычно п находится пределах от 1 до 10, причем для помещений небольшого объема используются более высокие значения п). Для удаления воздуха из помещения здание обычно оборудуется так называемыми фонарями.
Местную приточную вентиляцию широко используют для создания требуемых параметров микроклимата в ограниченном объеме, в частности, непосредственно на рабочем месте. Это достигается созданием воздушных оазисов, воздушных завес и воздушных душей.
Воздушный оазис создают в отдельных зонах рабочих помещений с высокой температурой. Для этого небольшую рабочую площадь закрывают легкими переносными перегородками высотой 2 м и в огороженное пространство подают прохладный воздух со скоростью 0,2 - 0,4 м/с.
Воздушные завесы создают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10 - 15 м/с) под некоторым углом навстречу холодному потоку.
Воздушные души применяют в горячих цехах на рабочих местах, находящихся под воздействием лучистого потока теплоты большой интенсивности (более 350 Вт/ м ).
Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае у рабочего возникают неприятные ощущения (например, шум в ушах). Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ).
СОДЕРЖАНИЕ РАБОТЫ
ОПИСАНИЕ СТЕНДА
Внешний вид стенда представлен на рисунке 1.
Стенд представляет собой стол со столешницей 1, на которой размещаются бытовой электрокамин 2, индикаторный блок 3, линейка 4, стойки 5 для установки сменных экранов 6, стойка 9 для установки измерительной головки 7 измерителя тепловых потоков, воздуходувка (воздушная помпа) 8, водяная помпа 14, душ 10, емкость с водой 11.
Стол выполнен в виде металлического сварного каркаса со столешницей и полкой, на которой хранятся сменные экраны 6.
Бытовой электрокамин 2 используется в качестве источника теплового излучения.
Воздуходувка 8 используется в качестве источника "воздушной завесы" и устанавливается на стойке 12 с помощью хомута 13 .
Стойки 5 для установки сменных защитных экранов 6 обеспечивают их оперативную установку и замену.
Для установки измерительной головки 7 служит вертикальная стойка 9, закрепленная на плоском основании 15. На стойке 9 с помощью струбцины 16 с винтами крепится измерительная головка 7. Стойку можно вручную перемещать по столешнице вдоль линейки 4.
Стандартная металлическая линейка 4 предназначена для измерения расстояния от источника теплового излучения (электрокамина 2) до измерительной головки 7 и жестко закреплена на столешнице 1.
Водяная помпа 14, душ 10 и емкость с водой 11 служат для создания «водяной завесы» совместно со стеклянным экраном 6. Душ 10 крепится на столе при помощи двух металлических стоек 17.
Сменные экраны 6 имеют один типоразмер. Металлические экраны выполнены в виде листов металла с направляющими. Экраны с цепями и брезентом выполнены в виде металлических рамок, в которых закреплены стальные цепи или брезент.
На столешнице установлен удлинитель 18 для подключения к сети переменного тока электрокамина 2, помпы 8, измерителя теплового потока ИПП-2М, помпы 14.
Прибор для измерения интенсивности теплового потока представлен на рис.2.
ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПРИ ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ
2.2.1. К работе допускаются студенты, ознакомленные с устройством лабораторного стенда,
принципом действия и мерами безопасности при проведении лабораторной работы.
2.2.2. Запрещается использовать воздушную помпу более 30 минут непрерывно.
2.2.3. Не допускается работа с металлическим экраном более 5 мин.
2.2.4. Запрещается прикасаться к электронагревательному элементу электрокамина.
2.2.5. Смену экранов производить в теплоизоляционных перчатках.
2.2.6. Запрещается включать «водяную завесу» на разогретый стеклянный экран во
избежание его повреждения.
2.2.7'. После проведения лабораторной работы отключить электропитание стенда.