Исходные данные для выполнения курсового проекта
Московский Государственный Институт
Стали и Сплавов
(Технологический Университет)
Кафедра Экономики и Менеджмента
Курсовая работа
по курсу: «Управление производством»
Выполнила: Чухловина Н.Ю.
Гр. МЭ-02-2
Проверил: Скрябин О.О.
Москва
Г.
Содержание:
Введение
1. Расчет производственной программы проектируемого цеха.
2. Определение структуры ремонтного цикла, расчет количества ремонтов и их продолжительности
3. Определение капитальных затрат на строительство объекта и стоимости его основных фондов.
4. Расчет потребности в оборотном капитале.
5. Расчет сметной стоимости строительства электролизного цеха.
6. Расчет численности и заработной платы.
7. Калькулирование себестоимости продукции.
8. Расчет балансовой и чистой прибыли.
9. Оценка эффективности строительства методом «Поток наличности».
10. Расчет точки безубыточности, оценка финансовой устойчивости цеха и определение целевого уровня прибыли.
11. Основные технико-экономические показатели проектируемого цеха.
Список использованной литературы
Введение.
Для получения алюминия высокой чистоты (марок А995—А95) первичный алюминий технической чистоты электролитически рафинируют. Это позволяет снизить в алюминии содержание металлических и газообразных примесей и тем самым значительно повысить его электропроводность, пластичность, отражательную способность и коррозионную стойкость.
Электролитическое рафинирование алюминия осуществляют электролизом расплавленных солей по трехслойному способу. Сущность способа заключается в следующем. В рафинировочном электролизере имеются три расплавленных слоя. Нижний, наиболее тяжелый, лежит на токопроводящей подине и служит анодом; он называется анодным сплавом и представляет собой сплав рафинируемого алюминия с медью, которую вводят для утяжеления слоя. Средний слой — расплавленный электролит; его плотность меньше плотности анодного сплава и выше плотности чистого рафинированного (катодного) алюминия, находящегося над электролитом (верхний, третий жидкий слой).
При анодном растворении все примеси более электроположительные, чем алюминий (Fe, Si, Ti, Cu и др.), остаются в анодном сплаве, не переходя в электролит. Анодно растворяться будет только алюминий, который в форме ионов Al3+ переходит в электролит: Al – 3e → Al3+.
При электролизе ионы алюминия переносятся к катоду, на котором и разряжаются: Al3+ + 3e → Al. В результате на катоде накапливается слой расплавленного рафинированного алюминия.
Если в анодном сплаве присутствуют примеси более электроотрицательные, чем алюминий (например, Ba, Na, Mg, Ca), то они могут электрохимически растворяться на аноде вместе с алюминием и в виде ионов переходить в электролит. Поскольку содержание электроотрицательных примесей в алюминии-сырце невелико, в заметном количестве в электролите они не накапливаются. Разряда этих ионов на катоде практически не происходит, так как их электродный потенциал электроотрицательнее алюминия.
В качестве электролита при электролитическом рафинировании алюминия в Советском Союзе и в большинстве стран применяют фторидно-хлоридный электролит, состав которого 55-60% BaCl2, 35-40% AlF4+NaF и 0-4% NaCl. Молярное отношение NaF : AlF3 поддерживают 1,5-2,0; температура плавления электролита 720-730°C; температура процесса электролиза около 800°C; плотность электролита 2,7 г/см3.
Анодный сплав готовят из первичного алюминия и чистой меди (99,90-99,95% Cu), которую вводят в металл в количестве 30-40%. Плотность жидкого анодного сплава такого состава 3-3,5 г/см3; плотность же чистого расплавленного катодного алюминия равна 2,3 г/см3. При таком соотношении плотностей создаются условия, необходимые для хорошего разделения трех расплавленных слоев.
В четверной системе Al—Cu—Fe—Si, к которой относится анодный сплав, образуется эвтектика с температурой плавления 520°C. Охлаждая анодный сплав, содержащий примеси железа и кремния в количествах выше эвтектических концентраций, можно выделить железо и кремний в твердую фазу в виде интерметаллических соединений FeSiAl5 и Cu2FeAl7. Так как температура анодного сплава в карманах электролизера на 30-40°C ниже температуры анодного сплава в рабочем пространстве ванны, в них (по мере накопления в анодном сплаве железа и кремния) будут выделяться твердые интерметаллические осадки. Периодически удаляя эти осадки, очищают анодный сплав (без его обновления) от примесей железа и кремния. Так как в анодном сплаве концентрируется галлий, то извлекаемые из электролизера осадки (30-40 кг на 1 т алюминия) могут служить источником получения этого металла.
Для электролитического рафинирования служат электролизеры, которые по конструкции напоминают электролизеры с обожженными анодами для электролитического получения первичного алюминия, но имеют другое подключение полюсов: подина служит анодом, а верхний ряд электродов — катодом. Современные электролизеры для электролитического рафинирования алюминия рассчитаны на силу тока до 75 кА.
Ниже приведены основные технико-экономические показатели электролизеров за 1979 г., достигнутые отечественными (1, 2, 3) предприятиями.
Электрохимический выход по току, рассчитанный по вылитому из электролизера металлу, составляет 97-98%. Фактический же выход по току, рассчитанный по количеству товарного металла, составляет 92-96%.
Сила тока, кА | 23,5 | 62,9 | 69,8* |
Среднее напряжение, В | 5,43 | 5,68 | 5,69 |
Выход по току, % | 95,7 | 93,0 | 92,7 |
Расход электроэнергии постоянного тока, кВтּч/т | 17 370 | 18 700 | 19 830 |
Суммарный электроэнергии переменного тока, кВтּч/т | 18 670 | 19 590 | 20 780 |
Уровни, см | |||
катодного алюминия | 16,6 | 12,9 | 14,6 |
электролита | 13,3 | 11,6 | 14,2 |
анодного сплава | 40,1 | 29,5 | 30,0 |
Расходные коэффициенты, кг/т: | |||
хлористый барий | 40,5 | 41,5 | 27,0 |
криолит | 27,7 | 21,0 | 16,5 |
фтористый алюминий | 6,7 | 13,1 | 3,8 |
хлористый натрий | 1,0 | 4,8 | — |
алюминий-сырец | |||
графит | 11,9 | 11,5 | 16,6 |
медь | 9,8 | 15,5 | 16,4 |
Выпуск алюминия высокой чистоты, % марок: | |||
А995 | 47,8** | 3,5 | 2,1 |
А99 | 30,4 | 67,1 | 54,2 |
А97 | 8,3 | 21,5 | 43,7 |
А95 | 10,4 | 7,9 | — |
ниже А95 | 3,1 | — | — |
* Показатели производства алюминия высокой чистоты. ** Сортность по электролизерам без расшихтовки. |
Электролиз-ный цех | алюминий сырец получают электролизом криолит-глиноземного расплава, основными компонентами которого являются креолит, фтористый алюминий и глинозем; для снижения температуры электролита и потерь алюминия применяются добавки фтористого магния, кальция и лития; | электролизеры с боковым токопроводом |
Алюминий степени чистоты выше марки A1 99,99 R может быть получен рафинирующим электролизом чистого или технически чистого алюминия с применением в качестве электролита комплексных алюмоорганических соединений алюминия. Электролиз проходит при температуре около 1000°С между твердыми алюминиевыми электродами и в принципе схож с рафинирующим электролизом меди. Природа электролита диктует необходимость работать без доступа воздуха и при низкой плотности тока.
Этот вид рафинирующего электролиза, применяемым сначала лишь в лабораторном масштабе, уже осуществляется в небольшом производственном масштабе — изготовляется несколько тонн металла в год. Номинальная степень очистки получаемого металла 99,999-99,9999%. Потенциальными областями применения металла такой чистоты являются криогенная электротехника и электроника.
Возможно применение рассмотренного метода рафинирования и в гальванотехнике.
Еще более высокую чистоту — номинально до A1 99,99999 — можно получить последующей зонной плавкой металла. При переработке алюминия повышенной чистоты в полуфабрикат, лист или проволоку необходимо, учитывая низкую температуру рекристаллизации металла, принимать особые меры предосторожности. Примечательным свойством рафинированного металла является его высокая электропроводность в области криогенных температур.
Получение вторичного алюминия
Переработка вторичного сырья и отходов производства является экономически выгодной. Получаемыми при этом вторичными сплавами удовлетворяется около 25% общей потребности в алюминии.
Важнейшей областью применения вторичных сплавов является производство алюминиевого фасонного литья. В DIN 1725, лист 2 наряду со стандартными марками сплавов приведены многочисленные марки сплавов, производимых литейными заводами. Перечень сплавов, выпускаемых этими заводами, содержит, кроме стандартных, некоторые нестандартные сплавы.
Безупречное приготовление алюминиевого скрапа в самых разнообразных пропорциях можно осуществлять только на специально оборудованных плавильных заводах. Представление о сложном рабочем процессе на таком заводе дает рис. 5.
Технологический процесс получения алюминия состоит из трех основных стадий:
1). Получение глинозема (Al2O3) из алюминиевых руд;
2). Получение алюминия из глинозема;
3). Рафинирование алюминия.
Получение глинозема из руд.
Глинозем получают тремя способами: щелочным, кислотным и электролитическим. Наибольшее распространение имеет щелочной способ (метод К. И. Байера, разработанный в России в конце позапрошлого столетия и применяемый для переработки высокосортных бокситов с небольшим количеством (до 5-6%) кремнезема). С тех пор техническое выполнение его было существенно улучшено. Схема производства глинозема по способу Байера представлена на рис. 1.
Сущность способа состоит в том, что алюминиевые растворы быстро разлагаются при введении в них гидроокиси алюминия, а оставшийся от разложения раствор после его выпаривания в условиях интенсивного перемешивания при 169-170оС может вновь растворять глинозем, содержащийся в бокситах. Этот способ состоит из следующих основных операций:
1). Подготовки боксита, заключающийся в его дроблении и измельчении в мельницах; в мельницы подают боксит, едкую щелочь и небольшое количество извести, которое улучшает выделение Al2O3; полученную пульпу подают на выщелачивание;
2). Выщелачивания боксита (в последнее время применяемые до сих пор блоки автоклав круглой формы частично заменены трубчатыми автоклавами, в которых при температурах 230-250°С (500-520 К) происходит выщелачивание), заключающегося в химическом его разложении от взаимодействия с водным раствором щелочи; гидраты окиси алюминия при взаимодействии со щелочью переходят в раствор в виде алюмината натрия:
AlOOH+NaOH→NaAlO2+H2O
или
Al(OH)3+NaOH→NaAlO2+2H2O;
содержащийся в боксите кремнезем взаимодействует со щелочью и переходит в раствор в виде силиката натрия:
SiO2+2NaOH→Na2SiO3+H2O;
в растворе алюминат натрия и силикат натрия образуют нерастворимый натриевый алюмосиликат; в нерастворимый остаток переходят окислы титана и железа, предающие остатку красный цвет; этот остаток называют красным шламом. По окончании растворения полученный алюминат натрия разбавляют водным раствором щелочи при одновременном понижении температуры на 100°С;
3). Отделения алюминатного раствора от красного шлама обычно осуществляемого путем промывки в специальных сгустителях; в результате этого красный шлам оседает, а алюминатный раствор сливают и затем фильтруют (осветляют). В ограниченных количествах шлам находит применение, например, как добавка к цементу. В зависимости от сорта бокситов на 1 т полученной окиси алюминия приходится 0,6-1,0 т красного шлама (сухого остатка);
4). Разложения алюминатного раствора. Его фильтруют и перекачивают в большие емкости с мешалками (декомпозеры). Из пересыщенного раствора при охлаждении на 60°С (330 К) и постоянном перемешивании извлекается гидроокись алюминия Al(OH)3. Так как этот процесс протекает медленно и неравномерно, а формирование и рост кристаллов гидроокиси алюминия имеют большое значение при ее дальнейшей обработке, в декомпозеры добавляют большое количество твердой гидроокиси — затравки:
Na2OּAl2O3+4H2O→Al(OH)3+2NaOH;
5). Выделения гидроокиси алюминия и ее классификации; это происходит в гидроциклонах и вакуум-фильтрах, где от алюминатного раствора выделяют осадок, содержащий 50-60% частиц Al(OH). Значительную часть гидроокиси возвращают в процесс декомпозиции как затравочный материал, которая и остается в обороте в неизменных количествах. Остаток после промывки водой идет на кальцинацию; фильтрат
также возвращается в оборот (после концентрации в выпарных аппаратах — для выщелачивания новых бокситов);
6). Обезвоживания гидроокиси алюминия (кальцинации); это завершающая операция производства глинозема; ее осуществляют в трубчатых вращающихся печах, а в последнее время также в печах с турбулентным движением материала при температуре 1150-1300оС; сырая гидроокись алюминия, проходя через вращающуюся печь, высушивается и обезвоживается; при нагреве происходят последовательно следующие структурные превращения:
Al(OH)3→AlOOH→ γ-Al2O3→ α-Al2O3 | |||
200 оС– | 950 оС– | 1200 оС. |
В окончательно прокаленном глиноземе содержится 30-50% α-Al2O3 (корунд), остальное γ-Al2O3.
Этим способом извлекается 85-87% от всего получаемого глинозема. Полученная окись алюминия представляет собой прочное химическое соединение с температурой плавления 2050 оС.
Получение алюминия из его окиси
Электролиз окиси алюминия
Электролитическое восстановление окиси алюминия, растворенной в расплаве на основе криолита, осуществляется при 950-970°С в электролизере. Электролизер состоит из футерованной углеродистыми блоками ванны, к подине которой подводится электрический ток. Выделившийся на подине, служащей катодом, жидкий алюминий тяжелее расплава соли электролита, поэтому собирается на угольном основании, откуда его периодически откачивают (рис. 2). Сверху в электролит погружены угольные аноды, которые сгорают в атмосфере выделяющегося из окиси алюминия кислорода, выделяя окись углерода (CO) или двуокись углерода (CO2). На практике находят применение два типа анодов:
а) самообжигающиеся аноды Зедерберга, состоящие из брикетов, так называемых «хлебов» массы Зедерберга (малозольный уголь с 25-35% каменноугольного пека), набитых в алюминиевую оболочку; под действием высокой температуры анодная масса обжигается (спекается);
б) обожженные, или «непрерывные», аноды из больших угольных блоков (например, 1900×600×500 мм массой около 1,1 т).
Сила тока на электролизерах составляет 150 000 А. Они включаются в сеть последовательно, т. е. получается система (серия) — длинный ряд электролизеров.
Рабочее напряжение на ванне, составляющее 4-5 В, значительно выше напряжения, при котором происходит разложение окиси алюминия, поскольку в процессе работы неизбежны потери напряжения в различных частях системы. Баланс сырья и энергии при получении 1 т алюминия представлен на рис. 3.
Электролиз хлорида алюминия (метод фирмы Алкоа)
В реакционном сосуде окись алюминия превращается сначала в хлорид алюминия. Затем в плотно изолированной ванне происходит электролиз AlCl3, растворенного в расплаве солей KCl, NaCl. Выделяющийся при этом хлор отсасывается и подается для вторичного использования; алюминий осаждается на катоде.
Преимуществами данного метода перед существующим электролизом жидкого криолитоглиноземного расплава (Al2O3, растворенная в криолите Na3AlF6) считают: экономию до 30% энергии; возможность применения окиси алюминия, которая не годится для традиционного электролиза (например, Al2O3 с высоким содержанием кремния); замену дорогостоящего криолита более дешевыми солями; исчезновение опасности выделения фтора.
Восстановление хлорида алюминия марганцем (Toth — метод)
При восстановлении марганцем из хлорида алюминия освобождается алюминий. Посредством управляемой конденсации из потока хлорида марганца выделяются связанные с хлором загрязнения. При освобождении хлора хлорид марганца окисляется в окись марганца, которая затем восстанавливается до марганца, пригодного к вторичному применению. Сведения в имеющихся публикациях весьма неточны, так что в данном случае придется отказаться от оценки метода.
Получение рафинированного алюминия
Для алюминия рафинирующий электролиз с разложением водных солевых растворов невозможен. Поскольку для некоторых целей степень очистки промышленного алюминия (Al 99,5 — Al 99,8), полученного электролизом криолитоглиноземного расплава, недостаточна, то из промышленного алюминия или отходов металла путем рафинирования получают еще более чистый алюминий (Al 99, 99 R). Наиболее известен метод рафинирования — трехслойный электролиз.
Рафинирование методом трехслойного электролиза
Одетая стальным листом, работающая на постоянном токе (представленная на рис. 4 — см. выше) ванна для рафинирования состоит из угольной подины с токоподводами и теплоизолирующей магнезитовой футеровки. В противоположность электролизу криолитоглиноземного расплава анодом здесь служит, как правило, расплавленный рафинируемый металл (нижний анодный слой). Электролит составляется из чистых фторидов или смеси хлорида бария и фторидов алюминия и натрия (средний слой). Алюминий, растворяющийся из анодного слоя в электролите, выделяется над электролитом (верхний катодный слой). Чистый металл служит катодом. Подвод тока к катодному слою осуществляется графитовым электродом.
Ванна работает при 750-800°С, расход электроэнергии составляет 20 кВтּч на 1 кг чистого алюминия, т. е. несколько выше, чем при обычном электролизе алюминия.
Металл анода содержит 25-35% Cu; 7-12% Zn; 6-9% Si; до 5% Fe и незначительное количество марганца, никеля, свинца и олова, остальное (40-55%) — алюминий. Все тяжелые металлы и кремний при рафинировании остаются в анодном слое. Наличие магния в электролите приводит к нежелательным изменениям состава электролита или к сильному его ошлакованию. Для очистки от магния шлаки, содержащие магний, обрабатывают флюсами или газообразным хлором.
В результате рафинирования получают чистый алюминий (99,99%) и продукты сегрегации (зайгер-продукт), которые содержат тяжелые металлы и кремний и выделяются в виде щелочного раствора и кристаллического остатка. Щелочной раствор является отходом, а твердый остаток применяется для раскисления.
Рафинированный алюминий имеет обычно следующий состав, %: Fe 0,0005-0,002; Si 0,002-0,005; Cu 0,0005-0,002; Zn 0,0005-0,002; Mg следы; Al остальное.
Рафинированный алюминий перерабатывают в полуфабрикат в указанном составе или легируют магнием (см. табл. 1.2.).
ТАБЛИЦА 1.2. Химический состав алюминия повышенной чистоты и первичного алюминия по DIN 17122, лист 1.
Марка | Номер | Допустимые примеси* , % | |||||||
всего | в том числе | ||||||||
Si | Fe | Ti | Cu | Zn | прочие | ||||
A199,99R | 3.0400 | 0,01 | 0,006 | 0,005 | 0,002 | 0,003 | 0,005 | 0,001 | |
A199,9H | 3.0300 | 0,1 | 0,050 | 0,035 | 0,006 | 0,005 | 0,04 | 0,003 | |
A199,8H | 3.0280 | 0,2 | 0,15 | 0,15 | 0,03 | 0,01 | 0,06 | 0,01 | |
A199,7H | 3.0270 | 0,3 | 0,20 | 0,25 | 0,03 | 0,01 | 0,06 | 0,01 | |
A199,5H** | 3.0250 | 0,5 | 0,30 | 0,40 | 0,03 | 0,02 | 0,07 | 0,03 | |
A199H | 3.0200 | 1,0 | 0,5 | 0,6 | 0,03 | 0,02 | 0,08 | 0,03 | |
* Насколько возможно определить обычными методами исследования. ** Чистый алюминий для электротехники (алюминиевые проводники) поставляют в виде первичного алюминий 99,5, содержащего не более 0,03% (Ti + Cr + V + Mn); обозначается в этом случае E-A1, номер материала 3.0256. В остальном соответствует нормам VDE-0202. | |||||||||
Отходы переплавляют после грубой предварительной сортировки. Содержащиеся в этих отходах железо, никель или медь, точка плавления которых выше точки плавления алюминия, при плавке в плавильной пороговой печи остаются в ней, а алюминий выплавляется. Для удаления из отходов неметаллических включений типа окислов, нитридов, карбидов или газов применяют обработку расплавленного металла солями или (что рациональней) продувку газом — хлором или азотом.
Для удаления металлических примесей из расплава известны различные методы, например присадка магния и вакуумирование — метод Бекша (Becksche); присадка цинка или ртути с последующим вакуумированием — субгалогенный метод. Удаление магния ограничивается введением в расплавленный металл хлора. Путем введения добавок, точно определяемых составом расплава, получают заданный литейный сплав.
Производство алюминия технической чистоты
Электролитический способ — единственный применяющийся во всем мире для производства металлического алюминия технической чистоты. Все другие способы (цинкотермический, карбидотермический, субхлоридный, нитридный и др.), с помощью которых алюминий может быть извлечен из алюминиевых руд, разрабатывались в лабораторном и опытно-промышленных масштабах, однако пока не нашли практического применения.
Для получения алюминиево-кремниевых сплавов успешно применяется электротермический способ, впервые разработанный и осуществленный в промышленном масштабе в СССР. Он состоит из двух стадий: на первой стадии получают первичный алюминиево-кремниевый сплав с содержанием 60-63 % Al путем прямого восстановления алюмо-кремнистых руд в рудно-термических электрических печах; на второй стадии первичный сплав разбавляют техническим алюминием, получая силумин и другие литейные и деформируемые алюминиево-кремниевые сплавы. Ведутся исследования по извлечению из первичного сплава алюминия технической чистоты.
В целом получение алюминия электролитическим способом включает в себя производство глинозема (окиси алюминия) из алюминиевых руд, производство фтористых солей (криолита, фтористого алюминия и фтористого натрия), производство углеродистой анодной массы, обожженных угольных анодных и катодных блоков и других футеровочных материалов, а также собственно электролитическое производство алюминия, которое является завершающим этапом современной металлургии алюминия.
Характерным для производства глинозема, фтористых солей и углеродистых изделий является требование максимальной степени чистоты этих материалов, так как в криолитоглиноземных расплавах, подвергающихся электролизу, не должны содержаться примеси элементов, более электроположительных, чем алюминий, которые, выделяясь на катоде в первую очередь, загрязняли бы металл.
В глиноземе марок Г-00, Г-0 и Г-1, которые преимущественно используются при электролизе, содержание SiO2 составляет 0,02-0,05%, a Fe2O3 — 0,03-0,05%. В криолите в среднем содержится 0,36-0,38% SiO2 и 0,05-0,06% Fe2O3, во фтористом алюминии 0,30-0,35% (SiO2 + Fe2O3). В анодной массе содержится не более 0,25% SiO2 и 0,20% Fe2O3.
Важнейшая алюминиевая руда, из которой извлекают глинозем, боксит. В боксите алюминий присутствует в форме гидроокиси алюминия. В Советском Союзе, кроме боксита, для получения глинозема применяют нефелиновую породу — алюмосиликат натрия и калия, а также алунитовую породу, в которой алюминий находится в виде его сульфата. Сырьем для изготовления анодной массы и обожженных анодных блоков служат углеродистые чистые материалы — нефтяной или пековый кокс и каменноугольный пек в качестве связующего, а для производства криолита и других фтористых солей — фтористый кальций (плавиковый шпат).
При электролитическом получении алюминия глинозема Al2O3, растворенный в расплавленном криолите Na3AlF6, электрохимически разлагается с разрядом катионов алюминия на катоде (жидком алюминии), а кислородсодержащих ионов (ионов кислорода) — на углеродистом аноде.
По современным представлениям, криолит в расплавленном состоянии диссоциирует на ионы и : , а глинозем — на комплексные ионы и : , которые находятся в равновесии с простыми ионами: , .
Основным процессом, происходящим на катоде, является восстановление ионов трехвалентного алюминия: Al3+ + 3e → Al (I).
Наряду с основным процессом возможен неполный разряд трехвалентных ионов алюминия с образованием одновалентных ионов: Al3+ + 2e → Al+ (II) и, наконец, разряд одновалентных ионов с выделением металла: Al+ + e → Al (III).
При определенных условиях (относительно большая концентрация ионов Na+, высокая температура и др.) может происходить разряд ионов натрия с выделением металла: Na+ + e → Na (IV). Реакции (II) и (IV) обусловливают снижение выхода алюминия по току.
На угольном аноде происходит разряд ионов кислорода: 2O2– – 4e → O2. Однако кислород не выделяется в свободном виде, так как он окисляет углерод анода с образованием смеси CO2 и CO.
Суммарная реакция, происходящая в электролизере, может быть представлена уравнением Al2O3 + xC ↔ 2Al + (2x–3)CO + (3–x)CO2.
В состав электролита промышленных алюминиевых электролизеров, помимо основных компонентов — криолита, фтористого алюминия и глинозема, входят небольшие количества (в сумме до 8-9%) некоторых других солей — CaF2, MgF2, NaCl и LiF (добавки), которые улучшают некоторые физико-химические свойства электролита и тем самым повышают эффективность работы электролизеров. Максимальное содержание глинозема в электролите составляет обычно 6-8%, снижаясь в процессе электролиза. По мере обеднения электролита глиноземом в него вводят очередную порцию глинозема. Для нормальной работы алюминиевых электролизеров отношение NaF: AlF3 в электролите поддерживают в пределах 2,7-2,8, добавляя порции криолита и фтористого алюминия.
В производстве алюминия применяют электролизеры с самообжигающимися угольными анодами и боковым или верхним подводом тока, а также электролизеры с предварительно обожженными угольными анодами. Наиболее перспективна конструкция электролизеров с обожженными анодами, позволяющая увеличить единичную мощность агрегата, снизить удельный расход электроэнергии постоянного тока на электролиз, получить более чистый металл, улучшить санитарно-гигиенические условия труда и уменьшить выбросы вредных веществ в атмосферу.
Основные технические параметры и показатели работы алюминиевых электролизеров различного типа приведены в таблице.
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ И ПОКАЗАТЕЛИ РАБОТЫ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ
Параметры и показатели | С самообжигающимися анодами | С обожженными анодами | |
боковой токоподвод | верхний токоподвод | ||
Сила тока, кА | 60—120 | 60—155 | 160—255 |
Суточная производительность электролизера, т | 0,42—0,85 | 0,40—1,10 | 1,10—1,74 |
Анодная плотность тока, А/см2 | 0,80—0,90 | 0,65—0,70 | 0,70—0,89 |
Среднее напряжение на электролизере, В | 4,45—4,65 | 4,50—4,70 | 4,30—4,50 |
Выход по току, % | 85—88 | 84—86 | 85—89 |
Расходные коэффициенты на 1 т алюминия: | |||
электроэнергии постоянного тока, кВтּч | 15100—16200 | 15500—17300 | 14500—15500 |
глинозема, кг | 1920—1940 | 1920—1940 | 1920—1940 |
анодной массы, кг | 520—560 | 560—620 | — |
обожженных анодов, кг | — | — | 540—600 |
Фтористых солей в пересчете на фтор, кг | 20—30 | 25—35 | 15—25 |
Получение алюминия особой чистоты
Алюминий особой чистоты (марки A999) может быть получен тремя способами: зонной плавкой, дистилляцией через субгалогениды и электролизом алюминий-органических соединений. Из перечисленных способов получения алюминия особой чистоты практическое применение в СССР получил способ зонной плавки.
Принцип зонной плавки заключается в многократном прохождении расплавленной зоны вдоль слитка алюминия. По величине коэффициентов распределения К=Ств/Сж (где Ств — концентрация примеси в твердой и Сж — в жидкой фазе), которые в значительной мере определяют эффективность очистки от примесей, эти примеси могут быть разбиты на три группы. К первой группе относятся примеси, понижающие температуру плавления алюминия; они имеют К<1, при зонной плавке концентрируются в расплавленной зоне и переносятся ею к конечной части слитка. К числу этих примесей принадлежат Ga, Sn, Be, Sb, Ca, Th, Fe, Co, Ni, Ce, Te, Ba, Pt, Au, Bi, Pb, Cd, In, Na, Mg, Cu, Si, Ge, Zn. Ко второй группе принадлежат примеси, повышающие температуру плавления алюминия; они характеризуются К>1 и при зонной плавке концентрируются в твердой (начальной) части слитка. К этим примесям относятся Nb, Ta, Cr, Ti, Mo, V. К третьей группе относятся примеси с коэффициентом распределения, очень близким к единице (Mn, Sc). Эти примеси практически не удаляются при зонной плавке алюминия.
Алюминий, предназначенный для зонной плавки, подвергают некоторой подготовке, которая заключается в фильтрации, дегазации и травлении. Фильтрация необходима для удаления из алюминия тугоплавкой и прочной окисной пленки, диспергированной в металле. Окись алюминия, присутствующая в расплавленном алюминии, может при его затвердевании создавать центры кристаллизации, что ведет к получению поликристаллического слитка и нарушению эффекта перераспределения примесей между твердым металлом и расплавленной зоной. Фильтрацию алюминия ведут в вакууме (остаточное давление 0,1-0,4 Па) через отверстие в дне графитового тигля диаметром 1,5-2 мм. Предварительную дегазацию алюминия перед зонной плавкой (также нагреванием в вакууме) проводят для предупреждения разбрызгивания металла при расплавлении зоны в случае проведения процесса в глубоком вакууме. Последняя стадия подготовки алюминия к зонной плавке — травление его поверхности смесью концентрированных соляной и азотной кислот.
Так как алюминий обладает значительной химической активностью и в качестве основного материала для контейнеров (лодочек) применяют особо чистый графит, то зонную плавку алюминия проводят в вакууме или в атмосфере инертного газа (аргон, гелий).
Зонной плавкой в вакууме обеспечивается большая чистота алюминия вследствие улетучивания части примесей при вакуумировании (магния, цинка, кадмия, щелочных и щелочноземельных металлов), а также исключается загрязнение очищенного металла примесями в результате применения защитных инертных газов. Зонную плавку алюминия в вакууме можно проводить при непрерывной откачке кварцевой трубы, куда помещают графитовую лодочку со слитком алюминия, а также в запаянных кварцевых ампулах, из которых предварительно откачивают воздух до остаточного давления примерно 1ּ10–3 Па.
Для создания расплавленной зоны на слитке алюминия при его зонной плавке может быть применен нагрев с помощью небольших печей сопротивления или же токов высокой частоты. Для электропитания печей электросопротивления не требуется сложной аппаратуры, печи просты в эксплуатации. Единственный недостаток этого метода нагрева — небольшое сечение слитка очищаемого алюминия.
Индукционный нагрев токами высокой частоты — идеальный способ создания расплавленной зоны на слитке при зонной плавке. Метод высокочастотного нагрева (помимо того, что он позволяет осуществить зонную плавку слитков больших сечений) имеет важное преимущество, заключающееся в том, что расплавленный металл непрерывно перемешивается в зоне; это облегчает диффузию атомов примеси от фронта кристаллизации в глубь расплава.
Впервые промышленное производство алюминия высокой чистоты зонной плавкой было освоено на Волховском алюминиевом заводе в 1965 г. на установке УЗПИ-3, разработанной ВАМИ. Эта установка была оснащена четырьмя кварцевыми ретортами с индукционным нагревом, при этом индукторы были подвижными, а контейнеры с металлом неподвижными. Производительность ее составляла 20 кг металла за цикл очистки. Впоследствии была создана и введена в промышленную эксплуатацию в 1972 г. на Волховском алюминиевом заводе более высокопроизводительная цельнометаллическая установка УЗПИ-4.
Эффективность очистки алюминия при зонной плавке может быть охарактеризована следующими данными. Если суммарное содержание примесей в электролитически рафинированном алюминии составляет (30÷60)ּ10–4%, то после зонной плавки оно снижается до (2,8÷3,2)ּ10–4%, т. е. в 15-20 раз. Это отвечает остаточному электросопротивлению алюминия ρ○ (при температуре жидкого гелия 4,2 К) соответственно (20÷40)ּ10–10 и (1,8÷2,1)ּ10–10 или чистоте 99,997—99,994 и 99,9997%. В таблице (см. ниже) приведены данные радиоактивационного анализа о содержании некоторых примесей в зонно-очищенном алюминии и электролитически рафинированном. Эти данные свидетельствуют о сильном снижении содержания большинства примесей, хотя такие примеси, как марганец и скандий, при зонной плавке практически не удаляются.
В последние годы в ВАМИ разработана и опробована в промышленных условиях технология получения алюминия чистотой 99,9999% методом каскадной зонной плавки. Сущность способа каскадной зонной плавки заключается в том, что очистку исходного алюминия чистотой А999 ведут, последовательно повторяя циклы (каскады) зонной планки. При этом исходным материалом каждого последующего каскада служит средняя, наиболее чистая часть слитка, получаемого в результате предыдущего цикла очистки.
СОДЕРЖАНИЕ ПРИМЕСЕЙ В ЭЛЕКТРОЛИТИЧЕСКИ РАФИНИРОВАННОМ И ЗОННООЧИЩЕННОМ АЛЮМИНИИ, ×10–4 %
Примесь | Исходный алюминий (электролитически рафинированный 99,993-99,994 %) | Алюминий после зонной плавки | |
графит, вакуум | алунд, воздух | ||
Медь | 1,9 | 0,02 | 0,08 |
Мышьяк | 0,15 | 0,0015 | 0,001 |
Сурьма | 1,2 | 0,03 | 0,02 |
Уран | 0,002 | — | — |
Железо | ≤0,2 | ≤0,3 | |
Галий | 0,3 | 0,02 | 0,05 |
Марганец | 0,2—0,3 | 0,1—0,2 | 0,15 |
Скандий | 0,4—0,5 | 0,4—0,5 | 0,4—0,5 |
Иттрий | 0,02—0,04 | <<0,001 | <<0,001 |
Лютеций | 0,002—0,004 | <<0,0001 | <<0,0001 |
Гольмий | 0,005—0,01 | <<0,0001 | <<0,0001 |
Гадолиний | 0,02—0,04 | <<0,01 | <<0,01 |
Тербий | 0,003—0,006 | <<0,001 | <<0,001 |
Самарий | 0,05—0,01 | <<0,0001 | <<0,0001 |
Неодим | 0,1—0,2 | <<0,01 | <<0,01 |
Празеодим | 0,05—0,1 | <<0,001 | <<0,001 |
Церий | 0,3—0,6 | <<0,01 | <<0,01 |
Лантан | 0,01 | <<0,001 | <<0,001 |
Никель | 2,3 | — | <1 |
Кадмий | 3,5 | <<0,01 | 0,02—0,07 |
Цинк | <<0,05 | ||
Кобальт | 0,01 | <<0,01 | <<0,01 |
Натрий | 1—2 | <0,2 | <0,2 |
Калий | 0,05 | 0,01 | 0,01 |
Барий | — | — | |
Хлор | 0,01 | <0,01 | <0,01 |
Фосфор | 0,04 | — | |
Сера | 0,5—1,5 | — | |
Углерод | 1—2 | — | 1—2 |
Примечание. Количества теллура, висмута, серебра, молибдена, хрома, циркония, кальция, стронция, рубидия, церия, индия, селена и ртути в алюминии после зонной плавки ниже чувствительности радиоактивного анализа. |
Применение
График производства алюминия-сырца
высшими сортами (А85+А8+А7) по годам, %
В 2003 году выпуск алюминия-сырца высшими сортами составил 98 %.
Сочетание физических, механических и химических свойств алюминия определяет его широкое применение практически во всех областях техники, особенно в виде его сплавов с другими металлами. В электротехнике алюминий успешно заменяет медь, особенно в производстве массивных проводников, например, в воздушных линиях, высоковольтных кабелях, шинах распределительных устройств, трансформаторах (электрическая проводимость алюминия достигает 65,5% электрической проводимости меди, и он более чем в три раза легче меди; при поперечном сечении, обеспечивающем одну и ту же проводимость, масса проводов из алюминия вдвое меньше медных). Сверхчистый алюминий употребляют в производстве электрических конденсаторов и выпрямителей, действие которых основано на способности окисной пленки алюминия пропускать электрический ток только в одном направлении. Сверхчистый алюминий, очищенный зонной плавкой, применяется для синтеза полупроводниковых соединений типа AIII BV, применяемых для производства полупроводниковых приборов. Чистый алюминий используют в производстве разного рода зеркал отражателей. Алюминий высокой чистоты применяют для предохранения металлических поверхностей от действия атмосферной коррозии (плакирование, алюминиевая краска). Обладая относительно низким сечением поглощения нейтронов, алюминий применяется как конструкционный материал в ядерных реакторах.
В алюминиевых резервуарах большой емкости хранят и транспортируют жидкие газы (метан, кислород, водород и т. д.), азотную и уксусную кислоты, чистую воду, перекись водорода и пищевые масла. Алюминий широко применяют и оборудовании и аппаратах пищевой промышленности, для упаковки пищевых продуктов (в виде фольги), для производства разного рода бытовых изделии. Резко возросло потребление алюминия для отделки зданий, архитектурных, транспортных и спортивных сооружений.
В металлургии алюминий (помимо сплавов на его основе) — одна из самых распространённых легирующих добавок в сплавах на основе Cu, Mg, Ti, Ni, Zn и Fe. Применяют алюминий также для раскисления стали пред заливкой её в форму, а также в процессах получения некоторых металлов методом алюминотермии. На основе алюминия методом порошковой металлургии создан САП (спечённый алюминиевый порошок), обладающий при температурах выше 300°С большой жаропрочностью.
Алюминий используют в производстве взрывчатых веществ (аммонал, алюмотол). Широко применяют различные соединения алюминия.
Производство и потребление алюминия непрерывно растет, значительно опережая по темпам роста производство стали, меди, свинца, цинка.
В данной работе рассчитываются показатели экономической эффективности строительства электролизного цеха по производству алюминия сырца. Производительность цеха = 200000+40000=240000 т алюминия в год.
Исходные данные для выполнения курсового проекта