Проверка гипотез о коэффициенте линейной регрессии
Частным случаем линейного ограничения является проверка гипотезы о равенстве коэффициента регрессии некоторому значению . В этом случае соответстующая t-статистика равна:
где — стандартная ошибка оценки коэффициента — квадратный корень из соответствующего диагонального элемента ковариационной матрицы оценок коэффициентов.
При справедливости нулевой гипотезы распределение этой статистики — . Если значение статистики выше критического значения, то отличие коэффициента от является статистически значимым (неслучайным), в противном случае — незначимым (случайным, то есть истинный коэффициент вероятно равен или очень близок к предполагаемому значению )
Замечание[править | править исходный текст]
Одновыборочный тест для математических ожиданий можно свести к проверке линейного ограничения на параметры линейной регрессии. В одновыборочном тесте это «регрессия» на константу. Поэтому регрессии это и есть выборочная оценка дисперсии изучаемой случайной величины, матрица равна , а оценка «коэффициента» модели равна выборочному среднему. Отсюда и получаем выражение для t-статистики, приведенное выше для общего случая.
Аналогично можно показать, что двухвыборочный тест при равенстве дисперсий выборок также сводится к проверке линейных ограничений. В двухвыборочном тесте это «регрессия» на константу и фиктивную переменную, идентифицирующую подвыборку в зависимости от значения (0 или 1): . Гипотеза о равенстве математических ожиданий выборок может быть сформулирована как гипотеза о равенстве коэффициента b этой модели нулю. Можно показать, что соответствующая t-статистика для проверки этой гипотезы равна t-статистике, приведенной для двухвыборочного теста.
Также к проверке линейного ограничения можно свести и в случае разных дисперсий. В этом случае дисперсия ошибок модели принимает два значения. Исходя из этого можно также получить t-статистику, аналогичную приведенной для двухвыборочного теста.
Случайная величина — это величина, которая принимает в результате опыта одно из множества значений, причём появление того или иного значения этой величины до её измерения нельзя точно предсказать.
Биномиа́льное распределе́ние в теории вероятностей — распределение количества «успехов» в последовательности из независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна .
Для применения данного критерия необходимо, чтобы исходные данные имели нормальное распределение. В случае применения двухвыборочного критерия для независимых выборок также необходимо соблюдение условия равенства дисперсий. Существуют, однако, альтернативы критерию Стьюдента для ситуации с неравными дисперсиями.
Требование нормальности распределения данных является необходимым для точного -теста. Однако, даже при других распределениях данных возможно использование -статистики. Во многих случаях эта статистика асимптотически имеет стандартное нормальное распределение — , поэтому можно использовать квантили этого распределения. Однако, часто даже в этом случае используют квантили не стандартного нормального распределения, а соответствующего распределения Стьюдента, как в точном -тесте. Асимптотически они эквивалентны, однако на малых выборках доверительные интервалы распределения Стьюдента шире и надежнее.
Пуассоновское распределение (дискретное)
Распределение Пуассона моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.
При условии закон распределения Пуассона является предельным случаем биномиального закона. Так как при этом вероятность события A в каждом испытании мала, то закон распределения Пуассона называют часто законом редких явлений.
Ряд распределения:
….. | k | ….. | |||
….. | ….. |
Вероятности вычисляются по формуле Пуассона: .
Числовые характеристики: , ,
Разные многоугольники распределения при .