Способы возбуждения машин постоянного тока

 

Для работы электрической машины необходимо наличие маг­нитного поля. В большинстве машин постоянного тока это поле создается обмоткой возбуждения, питаемой постоянным током. Свойства машин постоянного тока в значительной степени опре­деляются способом включения обмотки возбуждения, т. е. спосо­бом возбуждения.

По способам возбуждения машины постоянного тока можно классифицировать следующим образом:

машины независимого возбуждения, в которых обмотка возбуждения (ОВ) питается постоянным током от источ­ника, электрически не связанного с обмоткой якоря (рис. 11, а);

машины параллельного возбуждения, в которых обмотка возбуждения и обмотка якоря соединены параллельно (рис. 11, б);

машины последовательного возбуждения (обыч­но применяемые в качестве двигателей), в которых обмотка воз­буждения и обмотка якоря соединены последовательно (рис. 11, в);

машины смешанного возбуждения, в которых имеются две обмотки возбуждения – параллельная ОВ1 и после­довательная ОВ2 (рис. 11, г);

машины с возбуждением постоянными маг­нитами (рис. 11, д).

Все указанные машины (кроме последних) относятся к маши­нам с электромагнитным возбуждением, так как маг­нитное поле в них соз­дается электрическим током, проходящим в обмотке возбуждения.

 

Рис. 11. Способы возбуждения машин по­стоянного тока

Начала и концы обмоток машин по­стоянного тока со­гласно ГОСТу обо­значаются: обмотка якоря – Я1 и Я2, об­мотка добавочных полюсов – Д1 и Д2, компенсационная обмотка – К1 и К2, обмотка возбуждения независимая – Ml и М2, обмотка возбуждения параллельная (шунтовая) – Ш1 и Ш2, обмотка возбуждения последовательная (сериесная) – С1 и С2.

 

Контрольные вопросы

 

1. Какие участки содержит магнитная цепь машины постоянного тока?

2. В чем сущность явления реакции якоря машины постоянного тока?

3. Почему МДС якоря, действующая по поперечной оси, вызывает размагничи­вание машины по продольной оси?

4. Как учитывается размагничивающее действие реакции якоря при расчете числа витков полюсной катушки обмотки возбуждения?

5. С какой целью компенсационную обмотку включают последовательно с об­моткой якоря?

6. Почему с увеличением воздушного зазора ослабляется размагничивающее влияние реакции якоря?

7. Какие способы возбуждения применяют в машинах постоянного тока?

8. Что называется коммутацией в М.П.Т?

9. Способы улучшения коммутации?

 

 

Лекция № 4

 

Генераторы постоянного тока и их основные характеристики

 

Основные понятия

 

В процессе работы генератора постоянного тока в обмотке якоря индуцируется ЭДС Еа. При подключении к генератору нагрузки в цепи яко­ря возникает ток, а на выводах генератора устанав­ливается напряжение, определяемое уравнением на­пряжений для цепи якоря генератора:

(28.1)

Здесь

(28.2)

– сумма сопротивлений всех участков цепи якоря: обмотки якоря rа, обмотки добавочных полюсов rд, компенсационной обмотки rк.о, последовательной обмотки возбуждения rс и переходного щеточного контакта rщ.

Якорь генератора приводится во вращение при­водным двигателем, который создает на валу гене­ратора вращающий момент М1. Если генератор ра­ботает в режиме х.х. (Ia = 0), то для вращения его якоря нужен сравнительно небольшой момент холо­стого хода M0. Этот момент обусловлен тормозными моментами, возникающими в генераторе при его работе в режиме х.х.: моментами от сил трения и вихревых токов в якоре.

При работе нагруженного генератора в проводах обмотки якоря появляется ток, который, взаимодей­ствуя с магнитным полем возбуждения, создает на якоре электромагнитный момент М. В генераторе этот момент направлен встречно вра­щающему моменту приводного двигателя ПД (рис. 12), т. е. он является нагрузочным (тормозящим).

При неизменной частоте вращения (n=const) вра­щающий момент приводного двигателя М1 уравнове­шивается суммой противодействующих моментов: мо­ментом х.х. М0 и электромагнитным моментом М, т. е.

M1 = M0 + M.(28.3)

Выражение (28.3) – уравнение моментов для генератора при n = const. Умножив члены уравнения (28.3) на угловую скорость вращения якоря w, получим уравнение мощностей:

Р10 + Рэм, (28.4)

где Р1 = М1w – подводимая от приводного двигателя к генератору мощность (меха­ническая); Р0 = М0w – мощ­ность х.х., т.е. мощность, подводимая к генератору в режиме х.х. (при отключен­ной нагрузке); Рэм = Мw – электромагнитная мощность генератора.

 

Рис. 12. Моменты, действующие в генераторе постоянного тока.

 

Согласно (25.27), получим

Рэм = Еа Iа

или с учетом (28.1)

(28.5)

где P2 – полезная мощность генератора (электрическая), т. е. мощ­ность, отдаваемая генератором нагрузке; Рэа – мощность потерь на нагрев обмоток и щеточного контакта в цепи якоря.

Учитывая потери на возбуждение генератора Рэ.в,получим уравнение мощностей для генератора постоянного тока:

P1 = P2 + P0 + Pэа + Pэ.в (28.6)

Следовательно, механическая мощность, развиваемая при­водным двигателем Р1, преобразуется в генераторе в полезную электрическую мощность Р2, передаваемую нагрузке, и мощ­ность, затрачиваемую на покрытие потерь (Р0эа+ Рэ.в).

Так как генераторы обычно работают при неизменной частоте вращения, то их характеристики рассматривают при условии n = const. Рассмотрим основные характеристики генераторов посто­янного тока.

Характеристика холостого хода – зависимость напряжения на выходе генератора в режиме х.х. U0 от тока возбуждения Iв:

U0 = ¦ (Iв) при I = 0 и n = const.

Нагрузочная характеристика – зависимость напряжения на выходе генератора U при работе с нагрузкой от тока возбу­ждения Iв:

U = ¦ (Iв) при I = 0 и n = const.

Внешняя характеристика – зависимость напряжения на вы­ходе генератора U от тока нагрузки I:

U = ¦(Iв) при rрг = const и n = const,

где rрг – регулировочное сопротивление в цепи обмотки возбуж­дения.

Регулировочная характеристика – зависимость тока возбуж­дения Iв от тока нагрузки I при неизменном напряжении на выходе генератора:

Iв = ¦(I) при U= const и n = const.

Вид перечисленных характеристик определяет рабочие свой­ства генераторов постоянного тока.