Эволюция и онтогенез. Биогенетический закон Мюллера-Геккеля.

Ответы:

1. Оплодотворение – это процесс слияния половых клеток. Процесс оплодотворения складывается из трех последовательных фаз: сближения гамет, активации яйцеклетки, слияния гамет или сингамии. Случайная встреча разных гамет при оплодотворении приводит к тому, что среди особей вида практически невозможно появление двух генотипически одинаковых организмов. Достигаемое с помощью описанных процессов генотипическое разнообразие особей предполагает наследственные различия между ними на базе общего видового генома.

Партеногенез – развитие без оплодотворения. В случае естественного партеногенеза развитие идет на основе цитоплазмы и пронуклеуса яйцеклетки. Особи, формирующиеся из яйцеклетки, имеют либо гаплоидный, либо диплоидный набор хромосом, так как чаще всего в начале дробления срабатывает один из механизмов удвоения числа хромосом. Естественный партеногенез чаще всего случается при незавершенном оплодотворении, т. е. в тех случаях, когда имела место активация яйцеклетки, но ядро сперматозоида не участвовало в оплодотворении. В активированных яйцах используется информация только женского пронуклеуса. Такой вид партеногенеза называют гиногенезом. При искусственном партеногенезе можно удалить женский пронуклеус, и тогда развитие осуществляется только за счет мужских пронуклеусов. Это андрогенез. Потомки наследуют либо только признаки матери при гиногенезе, либо только признаки отца – при андрогенезе. Это указывает на то, что наследственные свойства особи определяются в основном ядром, а не цитоплазмой. Естественный партеногенез явление редкое, и как правило не является единственным способом размножения вида. У пчел, например, он используется как механизм генотипического определения пола: женские особи (рабочие пчелы и царицы) развиваются из оплодотворенных яйцеклеток, а мужские (трутни) – партеногенетически.

Половой диморфизм – это подразделение гамет на яйцеклетки и сперматозоиды, а особей на самок и самцов. Наличие его в природе отражает различия в задачах, решаемых в процессе полового размножения мужской или женской гаметой, самцом или самкой.

2. Первично все многообразие жизни обусловливается разнообразием белковых молекул, выполняющих в клетках различные биологические функции. Структура белков определяется набором и порядком расположения аминокислот в их пептидных цепях. Именно эта последовательность аминокислот в пептидных цепях зашифрована в молекулах ДНК с помощью биологического (генетического) кода. Для шифровки 20 различных аминокислот достаточное количество сочетаний нуклеотидов может обеспечить лишь триплетный код, в котором каждая аминокислота шифруется тремя стоящими рядом нуклеотидами.

Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательного расположения нуклеотидов в и-РНК.

Св-ва ген. кода:

1) Код триплетен. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, называется триплетом или кодоном.

2) Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (исключение метиотин и триптофан)

3) Код однозначен – каждый кодон шифрует только 1 аминоксилоту

4) Между генами имеются «знаки препинания» (УАА,УАГ,УГА) каждый из которых означает прекращение синтеза и стоит в конце каждого гена.

5) Внутри гена нет знаков препинания.

6) Код универсален. Генетический код един для всех живых на земле существ.

Транскрипция – это процесс считывания информации РНК, осуществляемой и-РНК полимеразой. ДНК – носитель всей генетической информации в клетке, непосредственного участия в синтезе белков не принимает. К рибосомам – местам сборки белков – высылается из ядра несущий информационный посредник, способный пройти поры ядерной мембраны. Им является и-РНК. По принципу комплементарности она считывает с ДНК при участии фермента называемого РНК – полимеразой. В процессе транскрипции можно выделить 4 стадии:

1) Связывание РНК-полимеразы с промотором,

2) инициация – начало синтеза. Оно заключается в образовании первой фосфодиэфирной связи между АТФ и ГТФ и два нуклеотидом синтезирующей молекулы и-РНК,

3) элонгация – рост цепи РНК, т.е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды в транскрибируемой ните ДНК,

4) Терминация – завершения синтеза и-РНК. Промотр – площадка для РНК-полимеразы. Оперон – часть одного гена ДНК.

 

3. Исследователи начала XIX в. впервые стали обращать внимание на сходство стадий развития эмбрионов высших животных со ступенями усложнения организации, ведущими от низкоорганизованных форм к прогрессивным. Сопоставляя стадии развития зародышей различных видов и классов хордовых, К. Бар сделал следующие выводы:

1. Эмбрионы животных одного типа на ранних стадиях развития сходны.

2. Они последовательно переходят в своем развитии от более общих признаков типа ко все более частным. В последнюю очередь развиваются признаки, указывающие на принадлежность эмбриона к определенному роду, виду, и, наконец, индивидуальные черты.

3. Эмбрионы разных представителей одного типа постепенно обособляются друг от друга.

Развитие эволюционной идеи в последующем позволило объяснить сходство ранних зародышей их историческим родством, а приобретение ими все более частных черт с постепенным обособлением друг от друга – действительным обособлением соответствующих классов, отрядов, семейств, родов и видов в процессе эволюции.

Сопоставляя онтогенез ракообразных с морфологией их вы­мерших предков, Ф. Мюллер сделал вывод о том, что ныне живущие ракообразные в своем развитии повторяют путь, пройденный их предками. Преобразование онтогенеза в эволюции, по мнению Ф. Мюллера, осуществляется благодаря его удлинению за счет добав­ления к нему дополнительных стадий или надставок. На основе этих наблюдений, а также изучения развития хордовых Э. Геккель (1866) сформулировал основной биогенетический закон, в соот­ветствии с которым онтогенез представляет собой краткое и быстрое повторение филогенеза.

Повторение структур, характерных для предков, в эмбриогенезе потомков названо рекапитуляциями. Рекапитулируют не только морфологические признаки — хорда, закладки жаберных щелей и жаберных дуг у всех хордовых, но и особенности биохимической организации и физиологии. Однако в онтогенезе высокоорганизованных организмов не всегда наблюдается строгое повторение стадий исторического развития, как это следует из биогенетического закона. Так, зародыш человека никогда не повторяет взрослых стадий рыб, земноводных, пресмыкающихся и млекопитающих, а сходен по ряду черт лишь с их зародышами.

 


Билет № 6