Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

Выражение логических связок в естественном языке.

 

В мышлении мы оперируем не только простыми, но и сложными суждениями, образуемыми из простых посредством логических связок (или операций) — конъюнкции, дизъюнкции, импликации, эквиваленции, отрицания, которые также называются логическими константами, или логическими постоянными. Проанализируем, каким образом перечисленные логические связки выражаются в естественном (русском) языке.

Конъюнкция (знак «л») выражается союзами «и», «а», «но», «да», «хотя», «который», «зато», «однако», «не только..., но и» и др. В логике высказываний знак « л » соединяет простые высказывания, образуя из них сложные. В естественном языке союз «и» и другие слова, соответствующие конъюнкции, могут соединять существительные, глаголы, наречия, прилагательные и другие части речи. Например, «В корзине у деда лежали подберезовики и маслята» (aÙb), «Интересная и красиво оформленная книга лежит на столе». Последнее высказывание нельзя разбить на два простых, соединенных конъюнкцией: «Интересная книга лежит на толе» и «Красиво оформленная книга лежит на столе», — так как создается впечатление, что на столе лежат две книги, а не одна.

В логике высказываний действует закон коммутативности конъюнкции (aÙb)º(bÙa). В естественном русском языке такого закона нет, так как действует фактор времени. Там, где учитывается последовательность во времени, употребление союза «и» некоммутативно. Поэтому не будут эквивалентными, например, такие два высказывания: 1) «Прицепили паровоз, и поезд тронулся» и 2) «Поезд тронулся, и прицепили паровоз».

В естественном языке конъюнкция может быть выражена не только словами, но и знаками препинания: запятой, точкой с запятой, тире. Например, «Сверкнула молния, загремел гром, пошел дождь».

О выражении конъюнкции средствами естественного языка пишет С. Клини в своей книге «Математическая логика». В разделе «Анализ рассуждений» он приводит (не исчерпывающий) список выражений естественного языка, которые могут быть заменены символами « Л » или «&». Формула А ^ В в естественном языке может выражаться так:

 

«Не только А, но и В. Как А, так и В.

В, хотя и Л. А вместе с В.

В, несмотря на А. А, в то время как В» 7.

 

Придумать примеры всех этих структур предоставляем читателю.

В естественном (русском) языке дизъюнкция (обозначенная aÚb и aÚb) выражается союзами: «или», «либо», «то ли... то ли» и др. Например, «Вечером я пойду в кино или в библиотеку»; «Это животное принадлежит либо к позвоночным, либо к беспозвоночным»; «Доклад будет то ли по произведениям Л. Н. Толстого, то ли по произведениям Ф. М. Достоевского».

Для обоих видов дизъюнкции действует закон коммутативности: (aÚbº(bÚa) и (aÚb)º(bÚa). В естественном языке эта эквивалентность сохраняется. Например, суждение «Я куплю масло или хлеб» эквивалентно суждению «Я куплю хлеб или масло». С. Клини показывает, какими разнообразными способами могут быть выражены в естественном языке импликация (AÊB) и эквиваленция (A~B).

(Буквами А и В обозначены переменные высказывания.)

 

Закон тождества.

 

Закон тождества.

 

Этот закон формулируется так: «В процессе определенного рассуждения всякое понятие и суждение должны быть тожественными самим себе».

В математической логике закон тождества выражается следующими формулами:

A=A (равно это три параллельные линии)

Тождество есть равенство, сходство предметов в каком-либо отношении.Например, все жидкости тождественны в том, что они теплопроводны, упруги. Каждый предмет тождественен самому себе.Но реально тождество существует в связи с различием.Нет и не может быть двух абсолютно тождественных вещей(двух листочков дерева).Вещь вчера и сегодня и тождественна,и различна.

Отождествление(или идентификация) широко используется в следственной практике, например, при опознании предметов, людей, отпечатков пальцев0

 

14. Закон непротиворечия.

Закон непротиворечия (закон противоречия) — закон логики, который гласит, что два несовместимых (противоречащих либо противоположных) суждения не могут быть одновременно истинными. По крайней мере одно из них необходимо ложно.[1]

Математическая запись

где — знак конъюнкции, — знак отрицания.

Закон противоречия является фундаментальным логическим законом, на котором построена вся современная математика. Он является тавтологией классической логики, а также большинства неклассических логик, в том числе интуиционистской логики. Все же, существуют нетривиальные логические системы, в которых он не соблюдается, например логика Клини.Закон противоречия говорит о том, что если одно суждение что-то утверждает, а другое то же самое отрицает об одном и том же объекте, в одно и то же время и в одном и том же отношении, то они не могут быть одновременно истинными. Например, два суждения: «Сократ высокий», «Сократ низкий» (одно из них нечто утверждает, а другое то же самое отрицает, ведь высокий — это не низкий, и наоборот), — не могут быть одновременно истинными, если речь идет об одном и том же Сократе, в одно и то же время его жизни и в одном и том же отношении, то есть если Сократ по росту сравнивается не с разными людьми одновременно, а с одним человеком. Понятно, что когда речь идет о двух разных Сократах или об одном Сократе, но в разное время его жизни, например в 10 лет и в 20 лет, или один и тот же Сократ и в одно и то же время его жизни рассматривается в разных отношениях, например он сравнивается одновременно с высоким Платоном и низким Аристотелем, тогда два противоположных суждения вполне могут быть одновременно истинными, и закон противоречия при этом не нарушается. Символически он выражается следующей тождественно-истинной формулой: (а а), (читается: «Неверно, что а и не а»), где а — это какое-либо высказывание.