Единицы измерения информации

Для удобства помимо бита применяются более крупные единицы измерения информации.

1байт = 8 бит

Байт - это восьмиразрядный двоичный код, с помощью которого можно представить один символ. При вводе в ЭВМ символа с клавиатуры машине передается 1 байт информации.

1Кб (килобайт) = 1024 байт

1Мб (мегабайт) = 1024 Кб

1Гб (гигабайт) = 1024 Мб

1Тб(терабайт)=1024 Гб.

Для того чтобы подсчитать количество информации в сообщении необходимо умножить количество информации, которое несет 1 символ, на количество символов.

Определение 3. Информационный объем сообщения (информационная емкость сообщения) - количество информации в сообщении, измеренное в битах, байтах или производных единицах (Кбайтах, Мбайтах и т.д.).

Пример 1. Какое количество информации содержится в слове «информатика» (каждый символ кодировать 1 байтом).

Решение. В слове «информатика» 11 символов, поэтому количество информации определяется как 11* 1байт = 11 байт.

Пример 2. Объем информационного сообщения 12 288 битов (учитывая, что 1 байт = 8 битов), можно выразить как:

1) 1536 Кбайт; 2) 1,5 Мбайт; 3) 1,5 Кбайт; 4) 1,2 Кбайт.

Решение. Так как в в 1 байте - 8 бит, то 12 288 бит = 12 288/8=1536 байт. 1536/1024 =

1,5Кбайт.

Правильный ответ 3) 1,5 Кбайт

В примере 1 считалось, что количество информации, которое несет один символ, равно 1 байту. Но на самом деле это зависит от мощности алфавита.

Информационная емкость одного символа обычно обозначается через I, мощность алфавита - N. Эти величины связаны между собой следующей формулой: 2I=N, т.е. информационная емкость 1 символа I=log2N.

Пример 3. Измерить информационную емкость 1 символа русского алфавита (букву ё не yчитывать).

Решение. Если не учитывать ё, то в русском алфавите 32 буквы. Соответственно, I=log2 32=5 бит, т.е. каждый символ в русском алфавите несет 5 бит информации.

Пример 4. Мощность некоторого алфавита равна 64 символам. Каким будет объем информации в тексте, состоящем из 100 символов

Решение. Найдем информационную емкость 1 символа, используя формулу 2I=N.
2I=64, I= log2 64=6 (бит). Объем информации в тексте будет равен 100*6 бит = 600 бит.

Билет № 3.Системы счисления. Позиционные системы счисления.

Системы счисления

Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемыми цифрами.

Системы счисления делятся на непозиционные и позиционные.

Непозиционная система счисления – система счисления, в которой значение цифры не зависит от ее позиции в записи числа.

Примеры непозиционных систем счисления: унарная (единичная) система счисления, римская система счисления, алфавитная система счисления.

Унарная (единичная) система счисления характеризуется тем, что в ней для записи чисел применяется только один вид знаков – палочка. Каждое число в этой системе счисления обозначалось с помощью строки, составленной из палочек, количество которых равнялось обозначаемому числу. Неудобства такой системы счисления очевидны: это громоздкость записи больших чисел, значение числа сразу не видно, чтобы его получить, нужно сосчитать палочки.

В римской системе счисления для обозначения чисел используются заглавные латинские буквы, являющиеся «цифрами» этой системы счисления:

I V X L C D M

Число в римской системе счисления обозначается набором стоящих подряд «цифр». Значение числа равно:

1) сумме значений идущих подряд нескольких одинаковых «цифр» (назовем их группой первого вида);

2) разности значений большей и меньшей «цифр», если слева от большей «цифры» стоит меньшая (группа второго вида);

3) сумме значений групп и «цифр», не вошедших в группы первого и второго видов.

Примеры.

1. Число 32 в римской системе счисления имеет вид:

XXXII = (X+X+X)+(I+I) =30+2 (две группы первого вида)

2. Число 444 в римской системе счисления имеет вид:

CDXLIV = (D-C)+(L-X)+(V-I) (= 400 + 40 + 4 – три группы второго вида)

3. Число 1974:

MCMLXXIV = M+(M-C)+L+(X++X)+(V-I) = 1000+900+50+20+4 (наряду с группами обоих видов в формировании числа участвуют отдельные «цифры»)

4. Число 2005:

MMV = (M+M) +V = 1000+1000+5 (две группы первого вида)

Позиционные системы счисления характеризуется тем, что количественное значение цифры зависит от ее позиции в числе. Каждая позиционная система счисления имеет определенный алфавит цифр и основание, равное количеству цифр (знаков в ее алфавите).

Наиболее распространенными позиционными системами счисления являются десятичная, двоичная, восьмеричная и шестнадцатеричная.

Десятичная система счисления имеет алфавит из десяти цифр: 0, 1, …, 9.

Двоичная система счисления имеет алфавит из двух цифр: 0, 1.

Например, в числе 198710 цифра «1» обозначает одну тысячу (1*103),

цифра «9» обозначает девять сотен (9*102),

цифра «8» обозначает восемь десятков (8*101),

цифра «7» обозначает семь единиц (7*100).

В общем виде, если запись числа в системе счисления с основанием n>1 выглядит как abcd, то само число равно значению выражения an3+bn2+cn1+dn0.

 

 

Билет №4. 2,8,16 сс.