Определенный интеграл и его свойства
Пусть функция определена на отрезке . Разобьем отрезок на n частей точками , выберем на каждом элементарном отрезке произвольную точку xk и обозначим через длину каждого такого отрезка.
Интегральной суммой для функции на отрезке называется сумма вида
Определение: Определенным интегралом от функции на отрезке называется предел интегральной суммы при условии, что длина наибольшего из элементарных отрезков стремится к нулю:
Для любой функции , непрерывной на отрезке , всегда существует определенный интеграл
Простейшие свойства определенного интеграла
1) Определенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме определенных интегралов от слагаемых функций:
2) Постоянный множитель можно выносить за знак определенного интеграла
3) При перестановке пределов интегрирования определенный интеграл меняет знак на противоположный:
4) Определенный интеграл с одинаковыми пределами равен нулю:
5) Отрезок интегрирования можно разделить на части:
с-точка, лежащая между а и b.
6) Если на отрезке , то .
Для вычисления определенного интеграла от функции , в том случае , когда можно найти соответствующую первообразную , служит формула Ньютона-Лейбница:
=F(b)-F(a)
Рассмотрим нахождение простейших определенных интегралов.
Пример 1: Вычислить определенный интеграл .
Решение: =
Пример 2:Вычислить определенный интеграл: .
Решение:
.
Математический анализ. Дифференциальные уравнения
Определение:Уравнение, связывающее независимую переменную, неизвестную функцию и ее производные или дифференциалы различных порядков, называется дифференциальным уравнением.
.
Определение:Порядком дифференциального уравнения называется порядок старшей производной, входящей в это уравнение.
(Например, y΄sinx + ytgx = 1 - первого порядка;
- второго порядка.
Определение: Функция y =φ(x), удовлетворяющая дифференциальному уравнению, называется решением этого уравнения. Решение дифференциального уравнения, содержащее столько независимых произвольных постоянных, каков порядок уравнения, называется общим решением этого уравнения.
Для уравнения 1-го порядка: y = φ(x, C)
2-го порядка: y = φ(x, C1, C2)
Определение: Функции, получаемые из общего решения при различных числовых значениях произвольнх постоянных, называются частными решениями этого уравнения.
Определение: Задача на нахождение частного решения дифференциального уравнения при заданных начальных условиях называется задачей Коши.