Определенный интеграл и его свойства

 

Пусть функция определена на отрезке . Разобьем отрезок на n частей точками , выберем на каждом элементарном отрезке произвольную точку xk и обозначим через длину каждого такого отрезка.

Интегральной суммой для функции на отрезке называется сумма вида

Определение: Определенным интегралом от функции на отрезке называется предел интегральной суммы при условии, что длина наибольшего из элементарных отрезков стремится к нулю:

Для любой функции , непрерывной на отрезке , всегда существует определенный интеграл

Простейшие свойства определенного интеграла

 

1) Определенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме определенных интегралов от слагаемых функций:

2) Постоянный множитель можно выносить за знак определенного интеграла

3) При перестановке пределов интегрирования определенный интеграл меняет знак на противоположный:

4) Определенный интеграл с одинаковыми пределами равен нулю:

5) Отрезок интегрирования можно разделить на части:

с-точка, лежащая между а и b.

6) Если на отрезке , то .

Для вычисления определенного интеграла от функции , в том случае , когда можно найти соответствующую первообразную , служит формула Ньютона-Лейбница:

=F(b)-F(a)

Рассмотрим нахождение простейших определенных интегралов.

Пример 1: Вычислить определенный интеграл .

Решение: =

 

Пример 2:Вычислить определенный интеграл: .

Решение:

.

 

Математический анализ. Дифференциальные уравнения

 

Определение:Уравнение, связывающее независимую переменную, неизвестную функцию и ее производные или дифференциалы различных порядков, называется дифференциальным уравнением.

.

Определение:Порядком дифференциального уравнения называется порядок старшей производной, входящей в это уравнение.

(Например, y΄sinx + ytgx = 1 - первого порядка;

- второго порядка.

Определение: Функция y =φ(x), удовлетворяющая дифференциальному уравнению, называется решением этого уравнения. Решение дифференциального уравнения, содержащее столько независимых произвольных постоянных, каков порядок уравнения, называется общим решением этого уравнения.

Для уравнения 1-го порядка: y = φ(x, C)

2-го порядка: y = φ(x, C1, C2)

Определение: Функции, получаемые из общего решения при различных числовых значениях произвольнх постоянных, называются частными решениями этого уравнения.

Определение: Задача на нахождение частного решения дифференциального уравнения при заданных начальных условиях называется задачей Коши.