Испытания на растяжение и основные характеристики

Механических свойств

Механические испытания при кратковременных испытаниях применяются для оценки прочности деталей и конструкций, подвергающихся быстро нарастающим нагрузкам, и для определения механических свойств пластически деформируемых металлов и сплавов. Как правило, основные испытания материалов проводят в соответствии с ГОСТами, которые устанавливают методы испытаний, определяемые механические характеристики, требования к используемому оборудованию, типы и размеры испытываемых образцов и последовательность их нагружения, порядок обработки результатов испытания и оценки достоверности полученных результатов.

Статическое испытание на растяжение – наиболее распространенный метод механических испытаний конструкционных материалов. Это связано с простотой процедуры, наличием большого парка соответствующего оборудования и высокой практической ценностью получаемой при этом информации, используемой для оценки механического поведения материалов при разных видах нагружения. При испытаниях определяют характеристики прочности и характеристики пластичности. Для получения этих характеристик чаще всего используют универсальные испытательные машины, на которых испытывают на растяжение специально изготовленные образцы. Характер испытаний, применяемые образцы и т.д. стандартизированы. Например, испытания на растяжение при комнатной температуре соответствуют требованиям ГОСТ 1497-84.

При осевом растяжении образца реализуется одноосное напряженное состояние, при котором Ϭ1 = Ϭmax, Ϭ2 = Ϭ3 = 0, максимальное касательное напряжение τmax = Ϭmax /2 и действует в площадках, ориентированных под углом 45о к направлению Ϭ1. (Рис. ).

Обобщенной характеристикой сопротивления металлов деформированию является диаграмма деформирования, которая строится в координатах Ϭ – ε(Рис.11. ) и отражает этапы упругого и упругопластического деформирования до полного разрушения образца. При этом Ϭ определяется условно делением нагрузки Р в данный момент нагружения на начальную площадь сечения образца F0, а εделением текущего значения абсолютного удлинения образца ∆ℓна начальную его длину 0. Большинство стандартных прочност-

 
 

ных характеристик рассчитывают по положению определенных точек на этой диаграмме в виде условных растягивающих напряжений.

На практике же в соответствии с требованиями стандарта при растяжении образца графически фиксируется зависимость между приложенным усилием и абсолютным удлинением образца, т.е. механические свойства обычно определяют по первичным кривым растяжения в координатах Р - ∆ℓ (Рис.11. ), которые автоматически записываются на диаграммной ленте или в памяти компьютера.

 
 

Если же нагрузку относить к действительному в данный момент сечению, то получают значения истинных напряжений. Диаграммы истинных напряжений определять сложнее, но они дают представление о физических процессах, протекающих в материале в процессе деформации и имеют особое значение для прочностных расчетов и технологии обработки металлов давлением. Например, истинные напряжения при разрушении различных материалов и разных структурных состояниях весьма значительно отличаются.

При испытаниях на растяжение можно определить несколько характеристик прочности и пластичности.

1. Предел пропорциональности σпцотвечает напряжению, при котором отклонение от линейной зависимости между нагрузкой и удлинением достигает такой величины, что тангенс угла наклона, образованного касательной к кривой нагрузка - удлинение в точке Рпц с осью нагрузок увеличивается на 50% от своего значения на упругом участке. На рис.12.7 показано определение σпцграфическим способом. Из начала координат диаграммы деформации

2. Предел упругости Ϭ0.05 – напряжение, при котором остаточное удлинение достигает 0.05% длины участка образца, равного базе тензометра. Размер этого участка на стандартных (по ГОСТ 1497-84) образцах Ф10 мм равен пятикратному диаметру, т.е. 50 мм, и при изготовлении образца фиксируется кернами на боковой поверхности (Рис.12.7).

Предел упругости Ϭ0.05 можно определить графическим способом на диаграмме деформации в координатах Р - ∆ℓ. Для этого нужно знать масштаб оси деформаций диаграммы (М). На начальном участке диаграммы деформации (Рис.12.8) откладываем в мм размер, равный 50х0.05%хМ (отрезок ОЕ), и проводим линию ЕР, параллельную упругому участку ОА. Координата точки Р на оси ординат соответствует нагрузке Р0.05. Предел упругости Ϭ0.05 определяют по формуле:

Ϭ0.05 = Р0.05 /F0 ,,

где F0 - площадь первоначального сечения рабочей части образца. Масштаб М можно рассчитать по диаграмме. Для этого необходимо измерить на испытанном образце абсолютное удлинение ∆ℓ и определить на диаграмме длину участка, соответствующую ∆ℓ.Разделив эту длину на ∆ℓ получаем величину масштаба М.

3. Предел текучести ϬТ. Различают физический и условный предел текучести. Физический предел текучести определяют на материалах, диаграммы растяжения которых имеют ярко выраженные зуб и площадку текучести (Кривые 2 и 3 на рис.12.9). На таких материалах определяют: Верхний предел текучести ϬТВ – напряжение, соответствующее верхнему пику нагрузки до начала текучести образца. Нижний предел текучести ϬТН – напряжение, при котором образец деформируется без заметного увеличения нагрузки.

Большинство диаграмм деформации конструкционных сталей и других технических материалов не имеют ярко выраженной площадки текучести. Для них определяют условный предел текучести Ϭ0.2 – напряжение, при котором остаточное удлинение достигает 0.2% длины рабочей части участка между кернами. Ϭ0.2 можно определить графически (Рис.12.10) по той же методике, что и Ϭ0.05. При этом условный предел текучести определяется по формуле Ϭ0.2 = Р0.2 /F0.

4. Модуль упругости – физическое свойство материала, характеризующее его упругие свойства. Различают модуль упругости при растяжении- Е и модуль упругости при сдвиге - G. Так как модуль упругости – это фактически приращение напряжения к соответствующему удлинению в пределах упругой области, то Модуль упругости при растяжении – Е можно определить графически на диаграмме деформации. При этом модуль упругости определяют по формуле:

Е = Рх 0 /∆ℓср х F0,

где Р– приращение нагрузки на линейном участке диаграммы, 0 – начальная расчетная длина образца (50 мм), ∆ℓср – приращение удлинения (с учетом масштаба М), F0 - площадь первоначального сечения рабочей части образца.

5. Предел прочности (временное сопротивление) – ϬВ – напряжение, соответствующее наибольшей нагрузке Рmax, предшествующей разрыва образца. Временное сопротивление вычисляют по формуле ϬВ = Рmax / F0.

При испытаниях на растяжение можно определить не только характеристики прочности но и пластичность. Характеристиками пластичности являются относительное удлинение δ и относительное сужение ψ.

6. Относительное удлинение (после разрыва) δ – это характеристика пластичности материала, равная отношению удлинения в момент разрушения к начальной расчетной длине образца, выраженная в процентах. Относительное удлинение определяется по формуле:

δ = [(к - ℓ0) / ℓ0]х 100 (%),

где кдлина расчетной части образца (между кернами) в момент разрушения.

7. Относительное сужение (после разрыва) ψ -это отношение разницы между площадью первоначального сечения образца F0 и площадью его минимального сечения в момент разрушения (в шейке) Fк к площади первоначального сечения образца F0, выраженная в процентах. Относительное удлинение определяется по формуле:

ψ = [(F0 - Fк) / F0]х 100 (%).

8. Истинное сопротивление разрушению Sк – определяется путем деления нагрузки, действовавшей непосредственно перед разрывом образца Рк на площадь сечения в шейке Fк. Истинное сопротивление разрушению Sк характеризует максимальное напряжений в соответствии с диаграммой истинных напряжений.

9. Расчет энергии упругой и пластической деформации осуществляется путем подсчета площадей, расположенных под кривой растяжения (т.е. в координатах Р - ∆ℓ). Этот расчет можно провести для любого момента в процессе разрушения. Упругая энергия Аупр , накопленная в образце, определяется как площадь треугольника между вертикалью из заданной точки и линией, идущей из той же точки параллельно линии нагружения (Рис.11. ). Энергия, затраченная на пластическую деформацию в процессе растяжения Апл, располагается под кривой растяжения слева от этого треугольника.

 



>