Раздел IV. Военная техника

Новые технические возможности привели к совершенствованию военной техники. В 1887 году американец Хайрем Максим создал первый пулемет. Знаменитый пулемет Максима производил 400 выстрелов в минуту и по огневой мощи был равнозначен роте солдат. Появились скорострельные трехдюймовые орудия и тяжелые 12-дюймовые пушки со снарядами весом 200-300 кг.

Особенно впечатляющими были перемены в военном кораблестроении. В Крымской войне (1853-1856 гг.) еще участвовали деревянные парусные гиганты с сотнями пушек на трех батарейных палубах, вес самых тяжелых снарядов составлял в то время 30 кг. В 1860 году в Англии был спущен на воду первый железный броненосец «Варриор», и вскоре все деревянные корабли пошли на слом. Началась гонка морских вооружений, Англия и Франция соревновались в создании все более мощных броненосцев, позднее к этой гонке присоединились Германия и США. В 1881 году был построен английский броненосец «Инфлексибл» водоизмещением в 12 тыс. тонн; он имел лишь 4 орудия главного калибра, но это были колоссальные пушки калибра 16 дюймов, размещенные во вращающихся башнях, длина ствола была 8 метров, а вес снаряда - 700 кг. Через некоторое время все ведущие морские державы стали строить броненосцы этого типа (правда, в основном с 12-дюймовыми орудиями). Новый этап гонки вооружений был вызван появлением в 1906 году английского броненосца «Дредноут»; «Дредноут» имел водоизмещение 18 тыс. тонн и десять 12-дюймовых орудий. Благодаря паровой турбине он развивал скорость в 21 узел. Перед мощью «Дредноута» все прежние броненосцы оказались небоеспособными, и морские державы стали строит корабли, подобные «Дредноуту». В 1913 году появились броненосцы типа «Куин Елизабет» водоизмещением 27 тыс. тонн с десятью 15-дюймовыми орудиями. Эта гонка вооружений естественным образом привела к мировой войне.

Причиной мировой войны было несоответствие реальной мощи европейских держав и размеров их владений. Англия, воспользовавшись ролью лидера промышленной революции, создала огромную колониальную империю и захватила большую часть ресурсов, необходимых другим странам. Однако к концу XIX века лидером технического и промышленного развития стала Германия; естественно, что Германия стремилась использовать свое военное и техническое превосходство для нового передела мира. В 1914 году началась первая мировая война. Германское командование надеялась разгромить своих противников за пару месяцев, однако в этих расчетах не была учтена роль появившегося тогда нового оружия – пулемета. Пулемет дал решающее преимущество обороняющейся стороне; германское наступление было остановлено и началась долгая «окопная война». Тем временем, английский флот блокировал германские порты и прервал поставки продовольствия. В 1916 году в Германии начался голод и, который, в конечном счете, привел к разложению тыла, к революции и к поражению Германии.

Таким образом, развитие техники и технологиив этот период носило взрывной характер, как по поражающим воображение масштабам и скорости распространения, так и по количеству и радикальности изобретений и нововведений. В первом приближении условная систематизация необъятного фактического материала может быть построена по следующим признакам (на основе которых впоследствии возможно создание "технофилогенетического дерева").

Весьма сложной задачей является связный научный обзор технологической картины XIX в. Проблема создания аналитической истории техники (техносферы) должна стать отдельной научно-педагогической темой.

Основные концепции философии. Эмпирическим направлением, понятным и популярным среди ученых XIX в., стал позитивизм. Согласно родоначальнику позитивизма О. Конту, наука представляет собой систематическое расширение простого здравого смысла на все действительно доступные умозрения, "простое методическое продолжение всеобщей мудрости" Общей чертой позитивизма (как 1-го, так и более поздних) было стремление решить характерные для философской (метафизической) теории познания проблемы, опираясь на естественнонаучный разум, противопоставляемый метафизике и сближаемый с обыденным разумом.

1-й позитивизм в этом стремлении опирался не на ньютоновскую механику, а на эволюционизм (сливавшийся с историзмом), который в конце XVIII - начале XIX в. стал "умонастроением представителей науки Старого света", апофеозом которого явилось учение Дарвина. При этом центр интереса представителей 1-го позитивизма находился не в природе, а в обществе, но образцом науки были физика и учение Дарвина. В отличие от 1-го позитивизма, 2-й позитивизм был тесным образом связан с осмыслением естественных наук, с происходившей в физике "антиньютонианской" революцией. Виднейшими и типичными представителями 2-го позитивизма являются Э.Мах (1838-1916) и А.Пуанкаре (1854-1912) - крупнейшие ученые революционной эпохи конца XIX - начала ХХ в.

Неопозитивизм. Неопозитивисты продолжали эмпиристскую линию махизма: они искали основу знания в непосредственно воспринимаемом, преодолевали психологизм и натурализм махизма. Структуру научного знания неопозитивисты рассматривали с точки зрения аппарата и исчислений математической логики. В рамках логического позитивизма (неопозитивизма) происходит быстрое усложнение теоретико-познавательных конструкций за счет введения аппарата математической логики и рафинированной работы с ним. В результате, на новом витке повторяется описанная Махом ситуация отрыва философии науки (в основе которой теперь лежит логика, а не метафизика) от сообщества ученых. "Домашней философией" последних становится опять 1-й и 2-й позитивизм, а для большинства - замешанный на реализме французского материализма XVIII в. физикализм, отличающийся от лаплассовского, включением концепций поля, квантов и вероятности.

В отличие от француза Конта, англичане Спенсер и Милль не обходили Юма, а исходили из него. Поэтому они вынуждены были решать поставленную им проблему неспособности эмпирической индукции приводить к законам науки. Милль пытался решить эту проблему в рамках логики, совершенствуя логическую сторону метода индукции, который считал единственным путем развития науки. Всякая наука для него состоит из некоторых данных и заключений, выведенных на основании этих данных, из доказательств и из того, что они доказывают. "Все, что известно о предмете становится наукой только тогда, когда вступает в ряд других истин, где отношение между общими принципами и частностями вполне понятно и где можно признать каждую отдельную истину за проявление действий законов более общих". При этом начало всякого исследования состоит в собирании неанализированных фактов и накоплении обобщений, непроизвольно являющихся естественной восприимчивостью. Спенсер решал юмовскую проблему натуралистически, на основе биологической наследственности. ""Врожденные" истины - основа всякого научного знания; они обладают свойствами всеобщности и необходимости". Он считал, что знания (как и биологические признаки особи) наследуются биологическим путем. Наука для Спенсера - средство приспособления человека к среде, способ "достигать блага и избегать вреда". В отличие от Конта, считавшего науку, научные знания главным стимулом развития общества, Спенсер видит стимулы действия людей, а следовательно, и развития общества в их чувствах, а не в разуме

Конструктивный эмпиризм и реалистический эмпиризм С.Фраассен на фоне постпозитивистской критики в своем "конструктивном эмпиризме" утверждает, что научная деятельность является скорее конструированием, чем открытием: конструирование моделей, которые должны быть адекватны явлению, а не открытие истины, имеющей отношение к ненаблюдаемому. "Цель науки - дать нам теории, которые являются эмпирически адекватными; и принятие теории включает, как веру, только то, что она эмпирически адекватна". Под "эмпирической адекватностью" С.Фраассен имел ввиду совпадение эмпирических проявлений теоретической модели явления и самого явления. Свою позицию он противопоставляет позиции "реалистического эмпиризма" ("научного реализма"), который утверждает, что "картина мира... является истинной картиной мира, верной в своих деталях, и сущности, постулируемые в науке, действительно существуют: наука продвигается посредством открытий, а не изобретений... Цель науки - дать нам истинную историю о том, как выглядит мир; и принятие научной теории включает веру в то, что это есть истина".

Проблемы и методы их решения. В последней трети XIX в. все более явным становится наступление нового, постньютоновского этапа в истории естественных наук, лидерство среди которых по-прежнему остается за физикой. Его характеризует победа фарадеевско-максвелловской полевой теории электромагнетизма и формирование статистической физики Максвелла-Больцмана-Гиббса. Первая теория ввела новый, по сути, немеханический объект - электромагнитное поле, вторая - вступила в конфликт с однозначным детерминизмом. Начинается кризис в ньютоновском мировоззрении. Происходит "брожение умов" и появляются проекты неньютоновских механик.

Разрастается кризис "конца века", и махизм становится наиболее популярным мировоззрением среди естествоиспытателей (Оствальд, Планк). К гносеологическому кризису, связанному с крушением "старых богов" ньютоновского механицизма быстро присоединяется стремительный рост фактов, несовместимых с только что воцарившейся максвелловской электродинамикой. Это - "ультрафиолетовая катастрофа", парадокс устойчивости атома в модели Резерфорда, аномальное поведение теплоемкости твердого тела при низких температурах, а также открытие рентгеновских и катодных лучей, естественной радиоактивности, с одной стороны, и теоретическая проблема о распространении света в движущейся среде, - с другой. Большинство этих противоречий были разрешены уже в XX веке.

Таким образом, в истории развития естественных наук рассматриваемого периода достаточно четко выделяется ряд этапов: зарождение кризиса (1870-1880); разрастание кризиса "конца века" (1890-1900);

"Ультрафиолетовая катастрофа" в конце XIX в. сводилась к парадоксальному результату, согласно которому никакое тепловое равновесие невозможно, так как вся энергия системы будет постепенно передаваться электромагнитным колебаниям все более высоких частот. Немецкий физик М.Планк в 1900 г. нашел простую формулу, которая, с одной стороны, не приводила к указанной "ультрафиолетовой катастрофе", а с другой - вела к известным формулам Вина и Рэлея-Джинса в соответствующих предельных случаях коротких и длинных электромагнитных волн. М.Планк затем показал, что эту формулу можно вывести теоретически, если предположить, что энергия излучается порциями - квантами, введя квант действия h - впоследствии знаменитая постоянная Планка. Таким образом, первенство в выдвижении квантовой гипотезы принадлежало М.Планку.

Парадокс устойчивости атомов состоял в том, что результаты опытов Резерфорда о столкновении a-частиц с атомами указывали на то, что атомы содержат маленькое положительное ядро, в поле которого движутся электроны. Отсюда вытекала планетарная модель атома. Но согласно законам электродинамики, подобное движение электрона являлось ускоренным движением, а следовательно электрон должен был излучать электромагнитные волны, терять энергию и очень быстро упасть на ядро. Гипотеза квантов позволила Бору объяснить этот парадокс, а также ряд обнаруженных к тому времени эмпирических выражений, описывающих дискретные спектры излучения различных атомных газов.

Выводы и обобщения

Понятие "классическая наука" охватывает период развития науки с XVII в. по 20-е годы XX в., то есть до времени появления квантово-релятивистской картины мира. Наука XIX в. довольно сильно отличается от науки XVIII в., которую только и можно считать по-настоящему классической наукой. Тем не менее, поскольку в науке XIX в. по-прежнему действуют гносеологические представления науки XVIII в., мы объединяем их в едином понятии - классическая наука. Этот этап науки характеризуется целым рядом специфических особенностей.

Стремление к завершенной системе знаний, фиксирующий истину в окончательном виде. Это связано с ориентацией на классическую механику, представляющую мир в виде гигантского механизма, четко функционирующего на основе вечных и неизменных законов механики. Поэтому механика рассматривалась и как универсальный метод познания окружающих явлений, в результате дававший систематизированное истинное знание, и как эталон всякой науки вообще.

Рассмотрение природы как из века в век неизменного, всегда тождественного самому себе, неразвивающегося целого. Данный методологический подход породил такие специфические для классической науки исследовательские установки, как, элементаризм и антиэволюционизм. Усилия ученых были направлены в основном на выделение и определение простых элементов сложных структур (элементаризм) при сознательном игнорировании тех связей и отношений, которые присущи этим структурам как динамическим целостностям (статизм). Истолкование явлений реальности поэтому было полной мере метафизическим, лишенным представлений об изменчивости, развитии, историчности (антиэволюционизм). Сведение самой жизни и вечно живого на положение ничтожной подробности Космоса, отказ от признания их качественной специфики в мире - механизме, четко функционирующего по законам, открытым Ньютоном.

Наука вытеснила религию в качестве интеллектуального авторитета. Человеческий разум и практическое преобразование природы как результат его деятельности полностью вытеснил теологическую доктрину и Священное Писание в качестве главных источников познания Вселенной.

Претендуя на ведущее место в мировоззрении, наука, тем не менее, оставляла место религии и философии. Мировоззрение модернизированного общества оставляло человеку право выбора веры, убеждений и жизненного пути. Правда, чем больше практических результатов давала наука, тем более прочными становились ее позиции, тем шире распространялось убеждений, что только наука способна обеспечить лучшее будущее человечества. Поэтому религия и метафизическая философия продолжали медленно, но верно клониться к закату. Знаком этого стала знаменитая позитивистская концепция Конта о трех периодах в развитии знаний - религиозном, метафизическом и научном, последовательно сменявших друг друга. Заявления науки о твердом знании мира представлялись не просто правдоподобными, казалось едва ли уместным ставить их под вопрос. Ввиду непревзойденной познавательной действенности науки, а также ввиду строжайшей безличной точности ее построений, религия и философия были вынуждены сообразовывать свои позиции с наукой. Именно в науке мышление нашло наиболее реалистичную и устойчивую картину мира.

2.8. Электродинамическая картина мира. Становление “Неклассической науки”

В конце XIX - начале XX в. произошли события, которые "потрясли мир". В 1895 г. К.Рентген (1845 - 1923) открыл "х-лучи".В 1896 г. А.Беккерель (1852 - 1908) обнаружил явление радиоактивности (естественной). В 1897 г. Дж.Томсон (1892 - 1975) открыл электрон.В 1898 г. Мария Кюри (1867-1934) и Пьер Кюри (1859 - 1906) открыли новый химический элемент -радий.В 1902 - 1903 гг. Э.Резерфорд (1871 - 1937) и Ф.Содди (1877 - 1956) создали теорию радиоактивности как спонтанного распада атомов и превращения одних элементов в другие (начало ядерной физики). В 1911 г. Э.Резерфорд экспериментально обнаружил атомное ядро.В 1920-х годах была разработана серия моделей строения атома.

Эти события привели к кризису ньютоновской парадигмы классической физической теории, господствовавшей в XVII - первой половине XIX в. Кризис разрешился революцией в физике, породившей: теорию относительности (частную, или специальную – СТО, и общую - ОТО); квантовую механику (нерелятивистскую и релятивистскую - квантовую теорию поля); Эти теории ознаменовали переход от "классической" к "неклассической" науке.

Создание теории относительности. Победа электромагнитной теории Максвелла привела к кризису (господствовавшего до тех пор в среде физиков) ньютоновского взгляда на мир. Следствием этого в конце XIX в. стали критический анализ оснований классической механики и создание альтернативных механик без понятия силы. С новой силой и аргументацией возродился спор XVII в. между Ньютоном и Лейбницем о существовании абсолютного пространства и времени. В физике разразился "гносеологический кризис", и центральное место в философии науки заняла критическая философия Эрнста Маха.

На этом фоне вызревало противоречие между максвелловской электродинамикой и классической механикой как физическими теориями. Они сконцентрировались вокруг вопроса о распространении электромагнитных волн (частным случаем которых является свет) - квинтэссенции теории Максвелла и преобразованиях Лоренца.

Специальная (частная) теория относительности (СТО) рождалась из преодоления этого теоретического противоречия. Решение, предложенное А.Эйнштейном, было дано в его статье "К электродинамике движущихся сред" (1905), где специальная теория относительности (СТО) была сформулирована почти в полном виде.

СТО полностью игнорировала гравитацию.Не было и речи об уравнениях гравитационного поля . Они впервые появились в 1915 г. в работе Эйнштейна, и с тех пор стали называться "уравнения Эйнштейна". Теория, изучающая эти уравнения (которые были дополнены в 1922 г. А. Фриманом) и наблюдаемые следствия их решений, получила название общей теории относительности (ОТО).

Квантовая механика. Также как галилеевско-ньютоновская механика рождается в результате преобразования сформулированных в Греции V в. до н. э. зеноновских парадоксов движения в определение новых фундаментальных идеальных объектов (ФИО) (состояние прямолинейного равномерного движения), так и квантовая механика рождается в результате преобразования парадокса волна-частица в новый ФИО - квантовую частицу.

Это превращение основывается на "четырех китах":Введении нового математического представления, состоящего из волновых функций и уравнения движения Шредингера; "Вероятностной интерпретацией волновой функции" (ВИВФ) М. Борна, устанавливающей соответствие между состоянием системы и его математическим образом - волновой функцией. "Принципом дополнительности" (ПД) Н. Бора, устанавливающим "набор одновременно измеримых величин" для данной системы, определяющий те измеримые величины, значения которых задают ее состояние. "Принципом соответствия" (ПС) Н.Бора, задающим квантовую систему и ее математический образ. Особо следует подчеркнуть обсуждаемые обычно в связи с "принципом дополнительности" Н.Бора тонкости корректного рассмотрения процедур измерения. ФИО -квантовая частица - получается из классической частицы (или волны) путем введения нового математического представления, вследствие чего она приобретает неклассическое поведение (включая проникновение через тонкие стенки (потенциальный барьер), явления сверхтекучести и сверхпроводимости и др.). При этом волновые функции являются лишь математическим средством описания,а не мистической реальностью. Та же схема характеризует и релятивистскую квантовую механику.

"Парадоксы" квантовой механики "Взгляды Эйнштейна представляют собой философское убеждение, которое не может быть ни доказано, ни опровергнуто физическими аргументами. Единственное, что можно сделать в плане возражения этой точке зрения, это сформулировать другое понятие реальности ..." - М. Борн. Уже более 70 лет в квантовой механике сосуществуют несколько спорящих между собой традиций (куновских "парадигм"), называемых "интерпретациями". Главные из них - "копенгагенская", отцами которой были Н.Бор, В. Гейзенберг, М. Борн,и "классическая", отстаиваемая ориентировавшимися на идеалы ньютоновской классической механики А. Эйнштейном, Э.Шредингером, Л. де Бройлем. Последние сформулировали свои претензии к первым в виде набора "парадоксов": ЭПР-парадокса, парадоксов нелокальности, шредингеровского кота и коллапса волновой функции при измерении, доказывающих, с их точки зрения, неполноту и незаконченность квантовой механики как физической теории. Эти "парадоксы" интенсивно обсуждаются физиками и сегодня. Причина этого спора не в физике, а в разнице философских позиций сторон. Эйнштейн здесь близок к позиции реалистического эмпиризма, в то время как Бор - к конструктивному эмпиризму, для которого нет проблемы, ввиду "отсутствия необходимости наблюдаемой величины иметь какое-либо определенное значение или какое-либо значение вообще, когда не производится никакого измерения". Это утверждение почти дословно совпадает с утверждением М.Борна: "Физик должен иметь дело не с тем, что он может мыслить (или представлять), а с тем, что он может наблюдать. С этой точки зрения, состояние системы в момент времени t, когда не проделывается никаких наблюдений, не может служить предметом рассмотрения". Поэтому сформулированные Эйнштейном парадоксы демонстрируют "только лишь парадоксальную форму традиционной (эйнштейновской) точки зрения, где ненаблюдаемое промежуточное состояние считается таким же реальным, как действительно наблюденное конечное состояние".Борн просто отбрасывает (запрещает) вопросы, сформулированные "реалистом" Эйнштейном, относящиеся к обсуждению теоретической модели квантовых объектов."Конструктивный эмпиризм" требует всего лишь "эмпирической адекватности" и может удовлетвориться "минималистской", или "инструменталистской" интерпретацией квантовой механики. Отметим, что приведенный анализ парадоксов производится из третьей - "галилеевской" позиции "конструктивного рационализма"."Конструктивный рационализм" утверждает искусственность, и в тоже время реальность квантового объекта, поэтому может рассуждать не только о его измерении, но и о его поведении, о его физической модели, о "физической реальности" состояний системы, когда не производится измерения.

История распространения и утверждения в научном сообществе теории относительности показывает ее огромный мировоззренческий потенциал, не сводимый к отдельным научным результатам. Это теория "многомерного мира",как бескомпромиссная, почти мистическая, борьба с абсолютной системой. И хотя и СТО и ОТО имеют веские экспериментальные подтверждения (например, точное описание орбиты Меркурия; исследование лучей света, красное смещение), оппозиция им не исчезла и сегодня. Из этих двух "супертеорий" в XX в. выросли: ядерная физика, физика твердого тела, лазерная оптика, квантовая химия и др.

Главная задача химии,cформулированная Д.И.Менделеевым (1834 – 1907), - получение веществ с необходимыми свойствами. Это требует научно-исследовательских усилий по выявлению способов управления свойствами вещества.

В первой половине XX в. эта задача решалась на структурно-молекулярном уровне. На такой базе возникла технология получения органических веществ.Одним из первых выдающихся достижений этой технологии стало получение синтетического каучука в 1928 г.

Биология в XX в. переходит от стадии описательной науки к теоретической и экспериментальной. Как развитие экспериментов и гипотез о наследственности Г. Менделя (1822-1884), в первой трети XX в. возникает мощное течение, получившее название генетика, судьба которой оказалась довольно драматичной в СССР. Трагична была и судьба ее лидера, Н. И. Вавилова (1887-1943), - автора теории гомологических рядов.

После серии великих открытий второй половины XX в. носителей и кодов наследственности РНК и ДНК, биология вышла на молекулярный уровень изучения своих объектов и явлений, она приобрела черты физико-химической биологии. В последней трети XX в. усиливается развитие концепции эволюционной биологии, что, в принципе, делает реальной возможность осуществления глобального эволюционного синтеза.

На исходе третьего десятилетия XX в. практически все главнейшие постулаты, ранее выдвинутые наукой, оказались опровергнутыми. В их число входили представления об атомах как твердых, неделимых и раздельных элементах материи, о времени и пространстве как независимых абсолютах, о строгой причинной обусловленности всех явлений, о возможности объективного наблюдения природы.

Предшествующие научные представления были всецело оспорены.Например, твердое вещество больше не являлось важнейшей природной субстанцией. Трехмерное пространство и одномерное время превратились в относительные проявления четырехмерного пространственно-временного континуума. Время течет по-разному для тех, кто движется с разной скоростью. Вблизи тяжелых объектов время замедляется, а при определенных обстоятельно может и совсем остановиться. Законы Евклидовой геометрии более не являлись обязательными для природоустройства в масштабах Вселенной. Планеты движутся по своим орбитам не потому, что их притягивает к Солнцу некая сила, действующая на расстоянии, но потому, что само пространство в котором они движутся, искривлено.Субатомные феномены обнаруживают себя и как частицы, и как волны, демонстрируют свою двойственную природу. Стало невозможным одновременно вычислить местоположение частицы и измерить ее ускорение. Принцип неопределенности в корне подрывал и вытеснял собой старый лапласовский детерминизм. Научные данные и объяснения не могли развиваться дальше, не затронув природы наблюдаемого объекта. Физический мир,увиденный глазами физика XX в., напоминал не столько огромную машину, сколько необъятную мысль. Началом третьего этапа революции были овладение атомной энергией в 40-е годы XX в. и последующие исследования, с которыми связано зарождение электронно-вычислительных машин и кибернетики. Также в этот период наряду с физикой стали лидировать химия, биология и цикл наук о Земле.

С середины XX в. наука окончательно слилась с техникой, приведя к современной научно-технической революции. Квантово-релятивистская научная картина мира стала первым результатом новейшей революции в естествознании. Другим результатом научной революции стало утверждение неклассического стиля мышления. Новейшая революция в науке привела к замене созерцательного стиля мышления деятельностным.

Постнеклассическая наука

Для постнеклассической науки в целом характерна ситуация единения (но без потери “лица”) физики, химии, биологии.Такое единение просматривается на всех уровнях - предметном, методологическом, терминологическом и понятийном. При этом живое и неживое в Природе утратили свою “несовместимость”. Можно сказать, что самые простые системы - физические, более сложные - химические и несопоставимо сложные - биологические. Новые подходы с самого начала не замыкались на физических процессах.Наиболее обоснованное и убедительное привлечение законов неравновесной термодинамики к объяснению не только механизмов функционирования, но даже происхождения и эволюции живого (в виде открытых самоорганизующихся термодинамических систем) осуществлено И. Пригожиным (1960-1970), а еще раньше Л. фон Берталанфи (1932), а затем У. Эшби (1966) (автор термина “самоорганизующая система”),Э. Шредингером (1974). Физические идеи и понятия для объяснения биологических явлений использовал Г. Хакен, которому принадлежит сам термин синергетика (от греч. synergia - совместное действие). В свою очередь, биология ретранслировала эволюционные концепции на все естествознание в целом.

В контексте различных и даже противоречивых концепций можно говорить о новой научной картине мира, создаваемой "постнеклассической" наукой Процесс ее построения еще не завершен, но основные контуры уже очевидны. Основу "постнеклассической" науки составляют термодинамика неравновесных, нелинейных открытых систем (синергетика), идея универсального эволюционизма и теория систем.

Исходные философские идеи новой науки:единство мира заключается в том, что на всех уровнях организации действуют общие законы; системное видение в противовес механическому пониманию мира; синтез детерминизма,многовариантности и случайности; отказ от концепции редукционизма: нахождение изоморфных законов в различных областях.

Идеи базируются на следующих основных положениях: случайное и необходимое - равноправные партнеры во Вселенной; вероятная самоорганизация неравновесной открытой системы, т.е. самопроизвольный переход к упорядоченному состоянию, сопровождающийся перераспределением материи во времени и пространстве; явления самоорганизации включают информационные процессы - генерацию и эволюцию ценной информации; подход к исследованию организма как к открытой системе; основные формы кооперативного поведения, свойственные живым организмам, имеют свои аналоги среди неорганических систем.

Астрофизика. В 1934 г. была опубликована замечательная работа В. Бааде и Ф. Цвикки, в которой утверждалось, что после вспышки сверхновой звезды образуется нейтронная звезда. Заметим, что сам нейтрон был открыт буквально накануне. Все дальнейшее развитие астрофизики проходило под знаком этой действительно выдающейся работы. Сейчас астрофизика переживает период крутого подъема. Он начался после второй мировой войны и характеризуется как "вторая революция в астрономии". Ее важнейший результат - всеволновая астрономия: космическое электромагнитное излучение принимается и изучается от радио- до гамма-диапазонов. Только эпоха великих географических открытий может сравниться с нашим временем по количеству (и качеству) новостей о природе окружающего мира. Постепенно вырисовывается вся грандиозная история нашей Вселенной - от первых наносекунд ее существования, когда она была ультраплотной и ультрагорячей, до нашей эпохи, когда Вселенная стала удивительным разнообразием физического состояния, образующего ее вещества.

Радиоастрономия. Прогресс радиоастрономических исследований определяется уровнем экспериментальной техники. Можно указать на два достижения, которые являются основой современной радиоастрономии. Первое: разработка апертурного синтеза и синтезированных радиотелескопов, разработка радиоинтерферометров со сверхбольшой базой. Смысл этих систем состоит в том, что сигналы, принятые разными антеннами, определенным образом складываются. В итоге удается воссоздать картину, которую дала бы одна большая остронаправленная антенна. И вот результат - в радиоастрономии получена разрешающая сила в десятитысячной доли угловой секунды, что на несколько порядков выше разрешения наземных оптических телескопов. Второе: разработка на основе ЭВМ многоканальных систем космической радиоспектроскопии, создание радиотелескопов-спектрометров. Эти инструменты позволили исследовать структуру мазерных источников, открыть в космосе более 50 различных органических молекул, в том числе сложные молекулы, состоящие более чем из десятка атомов.

Биофизика. "Среди научных дисциплин, завоевывающих за последнее время все большее и большее значение, выдающееся положение занимает биофизика, как всякая наука, стоящая на грани соседних областей", -писал в 1930-х годах академик П. П. Лазарев.Первый Институт биологической физики был создан в нашей стране еще в 1919 г.

В 1930-х годах на основе квантовых представлений о природе света была определена чувствительность зрительного аппарата человека (П. П. Лазарев, С. И. Вавилов). Обнаружено, что в условиях темновой адаптации (привыкание к полной темноте) человек в состоянии регистрировать отдельные кванты света.В то время был поставлен вопрос (на который и сегодня еще не получен однозначный ответ): действуют ли короткие и ультракороткие электромагнитные волны, производящие несомненный физиологический эффект, только тепловым способом, или существует и другой механизм их воздействия? Исследования в этой области, но, естественно, на новой методической базе ведутся и сейчас. Интересные результаты были получены В. В. Шулейкиным в ходе исследования гидро- и аэродинамики рыб и птиц.Например, изучен механизм движения летучей рыбы, которая запасает энергию, отталкиваясь хвостом от поверхности воды, а дальнейший полет ведет планированием. Оказалось, что пространственное расположение птиц в летящей стае отвечает минимуму затрат энергии, расходуемой на трение о воздух, и что существует ограниченное число форм расположения стаи, отвечающих этим условиям. Подобно этому стаи рыб минимизируют гидродинамическое сопротивление. Такие результаты имели не только теоретическое значение, но и практическое - конструирование летательных аппаратов и водных транспортных средств. В этот период Н. А. Бернштейн создал новый раздел биофизической науки—количественную биомеханику, имеющую широкое практическое применение в спорте,физиологии труда (предотвращение профессиональных заболеваний). В настоящее время эта теория нашла применение в создании роботов. Можно смело сказать, что многие биофизические исследования 1930-х годов вошли в "золотой фонд" науки.

Во второй половине XX в. появился новый термин - биотехника, он относится к участию биологических наук, и в частности биофизики, в решении технических проблем, в улучшении промышленных технологий. Приведем несколько примеров. Из всех способов преобразования химической энергии в механическую живая система использует наиболее эффективный: процесс идет при комнатной температуре, низком давлении и сравнительно высоком коэффициенте полезного действия (свыше 30%). Биологические системы отличаются от существующих технических высоким уровнем "миниатюризации", большими концентрациями энергии, низкими коэффициентами трения и большой надежностью. Существующие плотности энергии в технических системах, например, создаваемые электрическими и магнитными полями в газовой среде, составляют соответственно 10 дж/м23 и 10 дж/м63 . В биологических системах в двойном электрическом слое, возникающем на границе твердой фазы и раствора электролита, плотность энергии обычно 10 : 10дж/м78 3. Кроме того, используется эффективный вид "смазки" - отталкивающиеся электрически заряженные молекулярные слои. Надежность биологических систем определяется самовосстановлением и системой дублирования рабочих элементов.Сердце человека, этот "хемоэлектромеханический насос", производит за жизнь свыше 109 сокращений, в то время как самые надежные механические системы обеспечивают не более 107 переключений, т. е. во 100 раз меньше.

Возможность создания нового типа механохимического двигателя доказана экспериментально. Его функционирование основано на том, что равновесие между двумя формами полимера, имеющего разные механические свойства, сдвигается при изменении химического потенциала среды. Полимер, таким образом, находится то в растянутом, то в сжатом состоянии. Если раньше исследователи шли, в основном, по пути воспроизведения в технике принципов, используемых в живых системах, то сегодня создаются гибридные системы, в которых одна часть выполнена в металле, а другая - состоит из биоэлементов. Предпринимаются попытки создать компьютер, использующий элементы, характерные для нервной системы.Его предполагают снабдить датчиками на биологической основе и исполнительными устройствами, которые базируются на молекулярных механизмах мышечного сокращения.

Природа едина, а деление на науки условно. При решении любой практической проблемы необходимо учитывать возможное воздействие на окружающую среду и здоровье человека. В связи с этим видятся большие возможности биофизики с ее разносторонним подходом к исследованию биологических проблем и арсеналом эффективных физико-математических методов. Можно назвать несколько глобальных научных проблем, в решение которых биофизика могла бы внести заметный вклад. Это, во-первых, создание методов контроля за изменениями среды обитания человека; во-вторых,дальнейшее развитие профилактики, диагностики, поддержания и восстановления здоровья; в-третьих, поиск путей обеспечения человека пищей; в-четвертых,определение вариантов рационального использования уменьшающихся запасов полезных ископаемых. Одна из важнейших задач биофизики состоит в том, чтобы разобраться в цикличности процессов, протекающих в биосфере и предупредить возможное трагическое приближение к границам устойчивости биосферы. Мы еще достаточно далеки от понимания механизмов живой природы, и призыв древних "Познай самого себя" не только остается актуальным сегодня, но и смело может быть адресован будущим поколениям биофизиков.

В связи с возникновением новой ветви биологической науки - молекулярной биологии - появились поразительные возможности для изучения механизмов генетических процессов и управления ими.Открытие основного канала передачи наследственной информации путем комплементарного синтеза молекул нуклеиновых кислот и связанных с этим сложных скоординированных биохимических процессов позволило заглянуть в процесс эволюции макромолекул,создавший такие совершенные структуры, как хлоропласты, митохондрии, рибосомы, молекулы гемоглобина и ферментов.Вместе с тем в последние годы было показано, что только небольшая часть высших организмов, заключенных в хромосомах, - эукариот (т. е. имеющих ядра) - молекул ДНК кодирует синтез белков, а функциональная роль более 90 % ДНК еще неизвестна.

Установлено мозаичное строение гена, т. е. чередование последовательности ДНК, кодирующих часть белковой молекулы - экзонов, с нетранслируемыми последовательностями - интронами. Открыты мобильные генетические элементы - последовательности ДНК, которые при смене поколений могут перемещаться по геному, "включая" и "выключая" отдельные гены, в том числе и онкогены, "запускающие механизм" злокачественного перерождения клетки. Роль этих "прыгающих генов" в функционировании хромосомного набора и в эволюции выяснена еще далеко не полностью, и здесь нас могут ожидать интересные открытия.

Все это стало возможным благодаря разработке целой серии оригинальных методов манипулирования с молекулами нуклеиновых кислот и белков. Были созданы условия не только для расшифровки кода отдельных генов, но и для искусственного синтеза работающих генов. Возникла новая область науки - генетическая инженерия - конструирование рекомбинантных молекул. Сегодня мы можем выделить природный ген или химически синтезировать его, вставить в кольцевую молекулу ДНК - плазмиду и с ее помощью заставить клетки микроорганизмов продуцировать нужные человеку вещества, например, гормон роста, инсулин, интерфероны и т. д. Современная биотехнология основана на культивировании клеток или одноклеточных организмов рекомбинантными молекулами.

Техника и технологии. Оценивая общие тенденции и уже имеющиеся результаты научно-технического развития в XX в., можно говорить о том, что мир вступает в новую эволюционную фазу, которую можно назвать вторичной эволюцией, когда в противостоянии "технология - эволюция",влияние технологии начинает превалировать, радикально меняя и биосферу, и самого человека.На значительных исторических отрезках отчетливо видны взаимосвязи и взаимозависимости социальных, политических, научно-технических и всех других факторов, характеризующих целостное развитие цивилизации. ХХ век изменил само понятие технология. Подобно тому, как к математике стали относиться области, абстрагированные от количеств (как, например, общая топология и логика высказывания, некорректно поставленные задачи и т.п.), к физике - динамика систем с непредсказуемым поведением (странный аттрактор) и другие, - технология вобрала в себя процессы и средства обработки и передачи информации,социального управления, жизнеобеспечения.Мы можем определить сегодня технологию как совокупность всех алгоритмов, процессов и средств их реализации. Понимая под алгоритмами традиционную технологическую рецептуру, под процессами - только физико-химическое, под средствами - материалы, оборудование и строительные сооружения, мы получим классическое определение технологии материального производства. Относя к алгоритмам поведения законодательную систему, традиции и морально-этические установки общества, к процессам - его социальную динамику, к средствам - государственный аппарат, систему социальных институтов, мы получим определение технологии социального управления. Аналогичными подстановками можно получить определения медицинской технологии, технологии образования и т.д.

Все высокие технологии, определяющие лицо научно-технической цивилизации конца ХХ в., родились в форме фундаментальных исследований, как правило комплексного, междисциплинарного характера. Особенно это свойственно химическим технологиям, функции которых в ХХ в. совершенно преобразились. В настоящее время химическая технология используется в добывающих производствах.Кроме того, тонкие химические технологии включаются в состав горнорудных комплексов. Начиная от первичного сырья, производственные циклы завершаются выпуском такой продукции, как сверхчистые вещества и монокристаллы.

Возникают и развиваются такие новые методы и новые технологии, как микротехнология кристаллических информационных структур,в которых синтез вещества, формирование и даже монтаж деталей в готовое устройство высшего уровня сложности (как, например, сверхбольшие схемы, кристаллические микроустройства и т.п.) органически сливаются на физико-химической основе. Также преображаются и глубинные основы химической технологии. Во-первых,квантово-химическая теория строения вещества в сочетании с моделирующими возможностями супер-ЭВМ позволяет точно прогнозировать свойства синтезируемого вещества и путь его синтеза. Во-вторых,развитие тонких методов катализа, "прицельной" химии расщепления и сшивки крупных молекулярных фрагментов и другие подобные методы превращают химика как бы в зодчего новых химических форм. Наконец, ведется интенсивный поиск путей самоформирования все более высокоорганизованных химических структур. Этот поиск опирается на тонкие механизмы селективности химических реакций, на сложные процессы самоупорядочивания в процессах тепло-массопереноса и вдохновляется наиболее общими идеями естественных наук конца ХХ в., обозначаемых термином "синергетика". Почти фантастические перспективы развития в этом направлении наметились в области химии быстропротекающих процессов - взрыва, пламени, плазмы. Эти процессы, играющие ключевую роль в автомобильном, воздушном и морском транспорте, космонавтике, гидрометаллургии и т.д., остаются до настоящего времени мало изученными.

Во второй половине 80-х годов началось интенсивное исследование тонких механизмов быстрых реакций методом комбинационного рассеяния в скрещенных лучах лазеров, что позволяет осуществить как бы томографию пламени.Задача, в конечном счете, сводится к синтезу композиции вещества, который обеспечит саморегулирование быстрых процессов и их эффективное протекание в нужном направлении.Развитию химической технологии не уступает механическая.На основе гибких автоматизированных линий и обрабатывающих центров преобразуется парк металлообрабатывающих станков, формируется новая научно-технологическая область твердотельной микромеханики,в туннельных и других зондовых микроскопах достигается субатомная точность микромеханического (точнее наномеханического) привода, быстро возрастает число степеней свободы в механических системах роботов, развивается космическая механика свободного полета и невесомости и т.д. Развитие структурного принципа проектирования и управления производственными процессами, его распространение на технологические комплексы положили начало синтезу разнородных технологий с целью образования единой и органичной метатехнической системы. Но в то же время материальная технология продолжает интенсивное развитие в направлении более глубоких уровней строения материи. Это проявляется прежде всего в микротехнологии,на которой основана вся аппаратная база информатики, в генной инженерии, в работах, направленных на их синтез в рамках программ молекулярной электроники и нанотехнологии.Если предшествующая "сверхфаза" развития технологии была направлена на создание искусственного макромира на базе естественного микромира молекулярных и кристаллических структур, элементарных физико-химических процессов как на готовом фундаменте, то наступающая новая "сверхфаза" ориентирована на создание искусственного микромира, собственного фундамента технологии.

В ХХI в. потребуется более радикальная реконструкция всего арсенала аппаратных и методических средств микротехнологии, равно как и принципов проектирования ее конечной продукции. Существенные изменения произойдут и в принципах работы микроэлектронных устройств, а также информационных машин и систем, основанных на них. Квантовые вероятностные и коллективные электронные процессы станут основой действия элементов вычислительных систем. Интересные изменения ожидаются и в области биоподобных структур.Готовится синтез микробиологических исследований на молекулярном и субклеточном уровне,медикобиологических исследований иммунных механизмов, нейронных и биоэнергетических механизмов жизнедеятельности,с одной стороны, и функциональных устройств молекулярного уровня, которые совмещали бы в себе принципы действия электронных и биологических систем, с другой стороны.

Выводы и обобщения

Использование научных открытий для создания новых видов оружия и особенно создание атомной бомбы заставило человечество пересмотреть свою прежнюю безоговорочную веру в науку. С середины XX в. современная наука и техника стали получать в свой адрес многочисленные критические оценки со стороны философов, культурологов, деятелей литературы и искусства. По их мнению, техника умаляет и дегуманизирует человека, окружая его сплошь искусственными предметами и приспособлениями; она отнимает его у живой природы, ввергая в безобразно унифицированный мир, где цель поглощают средства, где промышленное производство превратило человека в придаток машины,где решение всех проблем видится в дальнейших технических достижениях, а не в человеческом их решении.

Непрекращающаяся гонка технического прогресса,требующая все новых сил и все новых экономических ресурсов, разрывает природную связь с Землей. Рушатся традиционные устои и ценности.Под воздействием нескончаемых технических новшеств современная жизнь меняется с большой быстротой. К этой гуманистической критике присоединились тревожные конкретные факты неблагоприятных последствий научных достижений. Опасное загрязнение воды, воздуха почвы планеты, вредоносное воздействие на животную и растительную жизнь, вымирание бесчисленных видов, коренные нарушения в экосистеме всей планеты - все эти серьезные проблемы, вставшие перед человеком, заявляют о себе все громче и настойчивей. Эти факты, отчетливо проявляются в современной науке и мировоззрении, говорят об их кризисе, разрешить который сможет только новая глобальная мировоззренческая революция,частью которой будет и новая революция в науке. К началу XXI в. мир потерял свою веру в науку, она безвозвратно утратила свой прежний облик, как оставила и свои прежние заявления об абсолютной непогрешимости своего знания. Подобная кризисная ситуация сложилась и в других сферах человеческой культуры.Поиск путей выхода из этого глобального кризиса еще только идет, черты будущего постмодернистского мировоззрения, как и новой постнеклассической науки, еще только намечаются.