Полевой пробой

Полевой, или туннельный, пробой относится к электрическому виду пробоя и характерен для сравнительно узких p-n переходов (ширина p-n перехода в равновесном состоянии составляет сотые доли микрометра).

Это обеспечивается в том случае, когда обе области p-n перехода имеют высокую степень легирования примесями. При этом длина свободного пробега l электронов меньше ширины обратно-смещенного p-n перехода:

l < lОБР.

При напряженности электрического поля E = UОБР /lОБР в p-n переходе, равной критическому значению EКР=(2¸4)×105 В/см, происходит полевой, или туннельный, пробой.

При такой большой напряженности электрического поля у атома полупроводника происходит отрыв валентных электронов и число носителей заряда растет. С точки зрения энергетической (зонной) диаграммы основу полевого пробоя составляет туннельный эффект - явление «просачивания» электронов сквозь узкий энергетический барьер p-n перехода, т.е. переход электронов с занятых энергетических уровней валентной зоны полупроводника p-типа на свободные энергетические уровни зоны проводимости полупроводника n-типа. Эти переходы происходят без изменения энергии электрона, а на энергетической диаграмме, изображенной для этого случая на рис.25, переходы происходят на одном энергетическом уровне, т.е. горизонтально.

Вероятность туннельных переходов при напряженности электрического поля E = 105 В/см составляет один электрон в секунду, а при напряженности электрического поля E = 106 В/см1012 электронов в секунду. Поэтому при критическом значении напряженности электрического поля обратносмещенного p-n перехода количество туннельных переходов будет значительным, а это приводит к резкому увеличению обратного тока.

 
 

Рис.25

 

При дальнейшем увеличении обратного напряжения на p-n переходе
UОБР > UПРОБ рост обратного тока происходит по экспоненциальному закону. Это объясняется увеличением напряженности электрического поля и степени перекрытия валентной зоны полупроводника p-типа и зоны проводимости полупроводника n-типа.

Обратная ветвь ВАХ p-n перехода для случая полевого пробоя представлена на рис.26. Полевой пробой имеет место в p-n переходах с напряжением пробоя до 5 В.

Зависимость 1 рис.26 изображена для значения температуры окружающей среды T1=+20°C. При увеличении температуры окружающей среды до значения T2=+50°С ВАХ p-n перехода видоизменяется, и на рис.26 это изменение нашло отражение в зависимости 2. При увеличении температуры обратный ток p-n перехода возрастает в связи с ростом концентрации неосновных носителей заряда по экспоненциальному закону. Такое изменение обратного тока наблюдается при регулировании обратного напряжения в диапазоне от нуля до напряжения пробоя.

С увеличением температуры напряжение пробоя уменьшается и становится равным UПРОБ2 (зависимость 2 рис.26). Это обусловлено тем, что при увеличении температуры возрастает амплитуда тепловых колебаний атомов полупроводника в узлах кристаллической решетки, энергия электронов также растет, величина контактной разности потенциалов p-n перехода jК снижается, ширина p-n перехода lОБР уменьшается, а напряженность электрического поля в p-n переходе Е увеличивается, критическое значение напряженности поля ЕКР достигается при меньшем значении UОБР, растет количество туннельных переходов и, следовательно, резко возрастает обратный ток. Следовательно, температурный коэффициент напряжения при полевом пробое имеет отрицательное значение:

ТКНПОЛ = DUПРОБ/DТ < 0,

где DUПРОБ = UПРОБ2 – UПРОБ1 - изменение напряжения пробоя при изменении температуры на величину DТ = Т2 – Т1 при фиксированном значении обратного тока.

 

 
 

 

Рис.26

 

При полевом пробое пробивное напряжение оказывается обратно пропорциональным концентрации примесей в областях, прилегающих к p-n переходу, или прямо пропорционально удельному сопротивлению этих областей.

Для кремниевых p-n переходов пробивное напряжение при полевом пробое определяется эмпирическим соотношением

UПР=200×rn+73×rР;

а для германиевых переходов:

UПР=190×rn+94×rР,

где rn и rР – удельные сопротивления n- и p-областей, прилегающих к переходу, Ом×см.

Следовательно, чем сильнее легированы области p-n перехода, тем меньше удельное сопротивление этих областей и тем меньше пробивное напряжение при полевом пробое.