Например, при определении математического ожидания

 

T

M [X (t)]= lim 1/T ò xk (t) dt. (3)

T® ¥ 0

В общем случае результаты усреднения по совокупности (1) и по времени (2) неодинаковы. Предел выборочного среднего по совокупности (1) представляет собой вероятност­ную характеристику, выражающую зависимость вероятностных свойств процесса от текущего времени. Предел выборочного среднего по времени (2) представляет собой вероятностную характеристику, выражающую зависимость вероятностных свойств процесса от номера реализации.

Наличие и отсутствие зависимости вероятностных характери­стик от времени или от номера реализации определяет такие фундаментальные свойства процесса, как стационарность и эрго­дичность. Стационарным, называется процесс, вероятностные ха­рактеристики которого не зависят от времени; соответственно эргодическим называется процесс, вероятностные характеристи­ки которого не зависят от номера реализации.

Следовательно, стационарный неэргодический случайный процесс — это такой процесс, у которого эквивалентны времен­ные сечения (вероятностные характеристики не зависят от теку­щего времени), но не эквивалентны реализации (вероятностные характеристики зависят от номера реализации). Нестационар­ный эргодический процесс — это процесс, у которого эквивалент­ны реализации (вероятностные характеристики не зависят от номера реализации), но не эквивалентны временные сечения (вероятностные характеристики зависят от текущего времени). Классифицируя случайные процессы на основе этих призна­ков (стационарность и эргодичность), получаем следующие четы­ре класса процессов: стационарные эргодические, стационарные неэргодические, нестационарные эргодические, нестационарные неэргодические.

Учет и использование описанных свойств случайных процес­сов играет большую роль при планировании экспериментапоопределению их вероятностных характеристик.

Поскольку измерение представляет собой процедуру нахож­дения величины опытным путем с помощью специальных техни­ческих средств, реализующих алгоритм, включающий в себя операцию сравнения с известной величиной, в статических изме­рениях должна применяться мера, воспроизводящая известную величину.

Типовые алгоритмы измерений вероятностных характеристик случайных процессов, различающиеся способом применения ме­ры в процессе измерений, представляются в следующем виде:

 

q* [X (t)]= KSdg [X (t)]; (4)

 

 

q* [X (t)]= Sd Kg [X (t)]; (5)

 

q* [X (t)]= Sd gK [X (t)]; (6)

 

где Sd—оператор усреднения; К—оператор сравнения;

q* [X (t)]—результат измерения характеристики q [X (t)].

Данные алгоритмы различаются порядком выполнения опе­раций. Операция сравнения с образцовой мерой (К) может быть заключительной [см. (4)], выполняться после реализации оператора g, но до усреднения [см.(5)] и, наконец, быть началь­ной [см. (6)]. Соответствующие обобщенные структурные схе­мы средств измерений значений вероятностных характеристик представлены на рис. 2.

На этих рисунках для обозначения блоков, реализующих операторы, входящие в выражения (4) — (6), используют­ся те же обозначения. Так, g устройство, выполняющее пре­образование, лежащее в основе определения вероятностной ха­рактеристики q; Sd — устройство усреднения (сумматор или ин­тегратор); К— компаратор (сравнивающее устройство), а М—мера, с помощью которой формируется известная величина (q., g., x.)

 

Представленное на рис. 2, а средство измерений реализует следующую процедуру: на вход поступает совокупность реализа­ций {xi (t)} (при использовании усреднения по времени — одна реализация xi, (t)-, на выходе узла g имеем совокупность преоб­разованных реализации {g[xi (t)]}; после усреднения получаем величину Sd {g[xi (t)]}, которая поступает на компаратор, осуще­ствляющий сравнение с известной величиной qо, в результате чего получаем значение измеряемой вероятностной характеристики q*[X(t)].

Отличие процедуры, реализуемой средством измерений, пред­ставленным на рис. 2, б, заключается в том, что после формиро­вания совокупности {g [xi (t)]} она поступает не на усреднитель, а на компаратор, который выполняет сравнение с известной вели­чиной go; на выходе компаратора формируется числовой массив {g* [xi (ti)]} и усреднение выполняется в числовой форме. На выхо­де усреднителя Sd имеем результат измерения q* [X (t)].

Средство измерений (рис. 2, в) основано на формировании массива числовых эквивалентов мгновенных значений реализа­ции случайного процесса Х (t), после чего преобразование g и ус­реднение выполняются в числовой форме. Это устройство эквива­лентно последовательному соединению аналого-цифрового пре­образователя (АЦП) и вычислительного устройства (процессо­ра). На выходе АЦП формируется массив мгновенных значений, а процессор по определенной программе обеспечивает реализа­цию операторов g и Sd,

Погрешность результата измерения вероятностной характе­ристики случайного процесса

Dq* [X(t)]= q*[X(t)]- q [ X(t)]. (7)

Для статистических измерений характерно обязательное на­личие составляющей методической погрешности, обусловленной конечностью объема выборочных данных о мгновенных значени­ях реализации случайного процесса, ибо при проведении физиче­ского эксперимента принципиально не может быть использован бесконечный ансамбль реализации или бесконечный временной интервал. Соотношение (7) определяет результирующую по­грешность, включающую в себя как методическую, так и инстру­ментальную составляющие. В дальнейшем будут приводиться соотношения только для определения специфической для стати­стических измерений методической погрешности, обусловленной конечностью числа реализации и временного интервала.